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Abstract

A common meadow is an enrichment of a field with a division operator
and an error value to make division total. A signed common meadow
enriches a common meadow with a sign function that can be equationally
axiomatised; the sign function can simulate an ordering on the underly-
ing field but is not limited to orderings. In particular, of mathematical
interest are the weakly signed common meadows. The prime example of a
weakly signed common meadow is an expansion of a common meadow of
complex numbers with a weak sign function. We show that all common
meadows may be enlarged to a weakly signed common meadow. A special
case are the 4-signed common meadows, which are precisely the enlarge-
ments of ordered fields. To illustrate the equational calculus for signed
common meadows, we use it as a foundation for building a probability
calculus and derive some classical formulae.

1 Introduction

Orderings occur naturally in number systems and are essential to their
practical usefulness. Mathematically, the theory of numerical orderings
lifts to become the algebra and logic of ordered rings and fields. Now, rings
and fields are somewhat deficient to analyse arithmetic systems that are
customised to be computer arithmetics. First, the standard operations of
addition, multiplication and inverse, +, -, — of fields need to be augmented
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with an explicit division operator +; further, this division operator needs
to be made a total function so that z = 0 is defined for all . A second
reason is that the theory of data types makes primary the use of equations,
or conditional equations, for specification and reasoning, and uses initial
algebra semantics and term rewriting. The axioms for fields makes their
logic more complex, beyond equational reasoning. Fields are definable in
first order logic but cannot be defined by equations (by Birkhoff’s Theorem
[26]) or conditional equations.

1.1 Meadow theories

In an extensive study of the algebra of arithmetical structures, to make
suitable abstract data types for specifying, reasoning and computing, we
have explored several ways of addressing these deficiencies in fields. In [15],
we have introduced division operators into fields to make algebras we call
meadows, and we have examined different totalisation methods for division
and found equational axiomatisations for different meadows as abstract
data types. For example, we have (i) given meadows of rational numbers
equational specifications under initial algebra semantics; (ii) established
the basic algebra of calculating with fractions in meadows; (iii) established
the completeness of the axiomatisations for some types of the meadow with
respect to equational formulae.

In this paper, we turn to the role of orderings and study how orderings
can be introduced into meadows so as to preserve their suitability as
abstract data types for computation, and the standard methods based on
equational specifications and reasoning.

Different types of meadow arise from how division is totalised on a
field. From our previous work, a particular semantic option for totalising
division stands out which we will study here: the common meadow in
which

z+0=_1

for all z, and where L plays the role of an error value; we give formal
definitions later (Definition 2.2).

Here, we will consider augmenting common meadows with orderings
whilst preserving their status as abstract data types with equational spec-
ifications. Recall that an ordered field is a field F' equipped with a total
order < that is compatible with its operations (Definition 3.1). In a field
the relation < gives rise to the sign operation s(—) defined for x € F by

s(zy=1ifx>0,ors(z) =0ifx =0, or s(z) = —-1if z < 0.

We will show how the idea of a sign function can be abstracted to create
equational axiomatic theories of signed common meadows as abstract data
types that fit closely with the established theories of common meadows.
In this way, we can establish ordering in our arithmetical abstract data
types.

The axioms for a sign function reveal some new insights of arithmetical
interest. First, we find that a special case of signed common meadows,
the 4-signed common meadows, are precisely the enlargements of ordered
fields with a four-valued sign function. But signed common meadows
suggest a remarkable generalization, the weakly signed common meadows,



which become the focus of our theory building. The prime example of
a weakly signed common meadow is an expansion of a common meadow
of complex numbers with a weak sign function; in contrast, the field of
complex numbers cannot be ordered, nor can its common meadow. In
fact, the distinction between signed and weakly signed is significant as we
prove:

Theorem. All common meadows of characteristic 0 may be enlarged to
a weakly signed common meadow.

To illustrate the equational specifications of signed common meadows,
we define axioms for a probability calculus, in which we derive some classic
formulae for inverse probabilities that involve orderings and division.

Finally, we compare this development with the introduction of ordering
via sign functions into another type of meadow, the involutive meadow,
in which division is made total by setting x +~ 0 = 0.

1.2 Structure of the paper

In Section 2, we gather necessary material about fields and meadows. In
Section 3, we recall the notion of an ordered field and turn to the sign
function and, specifically, its axiomatisation. We give a number of the-
orems characterising the sign function, relating it to ordered fields. In
Section 4, we develop the meadow of complex numbers and show that it
can be given a weak sign function and, in Section 5, we prove the general
theorem above. We derive the Bayes-Price Theorem and its expansion
using the fracterm calculus of signed common meadows in Section 6. In
Section 7, we compare our results with the use of sign functions on invo-
lutive meadows. Finally, we list further mathematical questions arising
from this first exploration of order in Section 8.

We asume the reader is familiar with the theory of abstract data types
[31] and field theory [38, 33].

2 Fields and meadows

2.1 Constructing common meadows

Recall the definitions of a commutative ring and field. A field is a com-
mutative ring in which non-zero elements are invertible. Whilst commu-
tative rings are defined by equations, fields are axiomatically definable by
I19 first order formulae. Whilst fields are defined axiomatically, we have
chosen to define meadows as constructions over fields — like matrices and
polynomials.

Definition 2.1. A meadow expands the operations of a field with a divi-
sion operation. A unary inverse operation ~' may also be used.

Our study of arithmetic algebras suitable for computation led us to
define this type of meadow.

Definition 2.2. A common meadow is an enlargement of a field F' by
(i) extending its domain with an additional element (a peripheral num-
ber) named L, and



(i) expanding its operations with the constant L and a function -+
or division, wherein division is made total by having L~ 1l foralzc
0

FU{Ll}, and such that L is absorptive w.r.t. to each operator, i.e., if L
appears as an argument to any operation then the result is 1.
(iii) The class of all common meadows we denote CM.

So, common meadows have the general form
(FU{L} | 0717l755+y7 —Z,T yvx/y)

where F' is a field and L is an element that behaves like an error value.
The idea of a common meadow was introduced in [12].

The signatures of rings and fields are the same and are denoted X,.
The signature of a meadow is denoted ¥. The signature Xcm of a common
meadow extends the signature X, of meadows with the constant L. The
addition of =+ introduces the all important fractions which in the setting
of meadows can be defined unambiguously:

Definition 2.3. Any term over a signature containing Xm that contains
a division operator as its leading function symbol is called a fracterm.

The terminology of fracterms is due to [14] and with more detail such
terminology has been developed and motivated in [5].

For signatures, we adopt the convention that constants stand for their
interpretation by default and that we will speak of a constant symbol if
the name is meant rather than its interpretation. We notice that when
writing % we will by default think of a number as its meaning while a
fracterm will be meant only when that is made explicit or is clear from
the context.

The following is immediate from Definition 2.2:

Lemma 2.1. Fwvery field F' can be enlarged to a common meadow F .

Thus, important arithmetics are the common meadows of rational
numbers Q,, real numbers R;, and complex numbers C,. This last
algebra plays an important role in the theory of sign functions in Section
4.

Example 2.1. The field C of complex numbers can be made a common
meadow C, in the obvious way. Normally, when working with the com-
plex numbers there are a number of important extra features we invariably
need to employ. Most obviously, there is the imaginary number i = ++/—1
which we will need to add as a constant. Thus, we will extend the signa-
ture X, of fields with a constant i, so that common meadows over complex
numbers have signature ¥cm ;. We mention some further operations later
in Section 4.

2.2 Equational axioms for common meadows

Just as rings and fields are defined axiomatically, so we sought axioma-
tisations of common meadows. The totalisation of division presents op-
portunities to replace the logical complexity of axiomatisations from II9



formulae to equations and reasoning with equational calculi. The impor-
tance of division led us to call these equation-based formal systems frac-
term calculi (after Definition 2.3). Fracterm calculi are quite dependent
on how one deals with partiality, i.e., with division by zero.

Following the investigation of a number of formalisations, we settled
upon a set, here named as Efc—cm, of 18 equations in [20]:

Proposition 2.1. Any common meadow satisfies the equational axioms
of Etc—cm listed in Tables 1 and 2.

Table 1 reveals the relationship with commutative rings: the equations
1-10 are derivable from commutative ring axioms (hence ‘weak’). The
equations of Table 2 add the axioms for +.

In various papers, we have built a portfolio of results and applications
based on the axioms in FEgc—cm (and their equivalents). These results
establish that the axioms of Efc_m offer a stable foundation for working
with known common meadows, and for building an abstract axiomatic
theory based on equational reasoning.

Thus, at this point, we must be careful to keep track of results specific
to

(a) common meadows as semantic constructions from fields — rather
like rings of polynomials, power series and matrices; or

(b) all the algebras that satisfy the axioms of Efc—cm.

Definition 2.4. Let Alg(FEfc—cm) be the class of all algebras that are mod-
els of Eftc—cm-

One such result is this from [22]:

Definition 2.5. The equational theory of common meadows is the set
Eqn(CM) ={e | VA€ CM.A E e}

of all equations over Ycy, that are true in all common meadows.

Theorem 2.1. The finite equational azxiomatisation Fgc_cm, equipped
with equational logic, is sound for the class CM of all common meadows,
and complete for the equational theory Eqn(CM) for common meadows.
Thus, for any equation e over Ycm,

Egc—em F e if, and only if, e € Eqn(CM).

A corollary of the theorem is that the equational theory for common
meadows is algorithmically decidable.

2.3 Conditional equational logic for common mead-
ows

Below we will discuss probability calculus in the setting of common mead-
ows, and we find that the use of conditional equations is needed. For that
reason we will introduce the Additional Value Law as introduced in [12]
and listed in Table 3. In that paper additional value is proposed as another
name for L.



(x+y)+z=2+(y+2) (1)
rty=y+w (2)
z+0=z (3)

z+(—2)=0-x (4)
z-(y-z)=(x-y) =z (5)
Toy=y-x (6)
lz=z (7)

z-(y+z)=(x y +(z-2) (8)

—(—z) =2 (9)
0-(x-2)=0-x (10)
r+Ll=1 (11)
Table 1: Ey., 1 axioms for weak commutative rings with L
import: Eyer 1
T
ruw_=r-u (13)
y v oy
§+g:(aﬁ v) +(y - ) (14)
Yy v y-v
T xr+0-2z
= 15
y+0-z y (15)
1
1 == 16
: (16)

Table 2: Efc_cm: equations for fracterm calculus for common meadows



1
—=1—=0-z=x
x

(17)

Table 3: FEay: additional value law

2.4 Proof rule R, for conditional equational frac-
term calculus

Besides AVL we will also make use of an additional proof rule for condi-
tional equational logic taken from [23].

The following proof rule is sound for common meadows, with E a
conjunction of equations:

FEAt=1l—sr=1l,FEAT=1L—=t=_1
FE—0-t=0-7r

Rcm

In [23] it is shown that all conditional equations true in all common
meadows are also derivable from the axioms in Table 2 and 3 with the
help of proof rule Rem.

2.5 Division by zero

The objective of totalizing division is to obtain a workable and practical
fracterm calculus. Common meadows provide one of several ways for
totalizing division in a field of numbers. There are a number of semantical
options in practical computing — such as using values error, co, 400, NalN
— and we have also constructed equational specifications and fracterm
calculi for these other semantics:

Involutive meadows, in which 1/0 =0, [15];

Wheels, in which one external co is used for totalisation 1/0 = co = —1/0,
together with an additional external error element | to control the side-
effects of infinity, [36, 27, 18];

Transrationals, in which besides the error element L, two external signed
infinities 400, —oo are added and division is totalised by setting 1/0 = co
and —1/0 = —o0, [1, 30, 16].

In practice, these semantic conventions can be found in theorem provers,
common calculators, exact numerical computation and, of course, floating
point computation. Indeed, we have developed a new model, the symmet-
ric transrationals [21]. However, their fracterm calculi are not without
complications. For example, a key property for any fracterm calculus is
fracterm flattening, a property first obtained in [12] for the fracterm cal-
culus for common meadows. In [19] it was shown that the presence of
fracterm flattening imposes requirements on a meadow which come very
close to it being a common meadow.

A fracterm calculus for the case of a partial division function has been
outlined in [24], the complexity of that approach manifesting itself in the
preferred logic for reasoning (a ‘short-circuit’ logic, after [11]).



3 The sign function

3.1 Ordered fields

Definition 3.1. An ordered field F< is a field F' with an ordering relation
that is

(i) reflexive, antisymmetric, and transitive;

(%) total: for all z,y € F<, either x <y ory < x;

(i) compatible with the operations: for all z,y,a € F<, if x <y then
z+a<y4+aand0 <z and0 <y then 0 < x-y.

The basic theory of ordered fields can be found in many algebra text-
books, starting with standard works such as [38, 33].

3.2 Axioms for signed common meadows

The focus of attention is now axiomatisation. The sign function is most
helpful for introducing ordering into the framework of an equational logic.
We will build on the characterisation Efc—cm of common meadows and
provide conditional equational axioms for common meadows equipped
with sign functions.

Definition 3.2. A weakly signed common meadow is a common meadow
equipped with a sign function s(—) which satisfies the azioms of Table /.

Now, whilst s(%) = ﬁ, it is not in general the case that
1 1
s(;) = s(z) because 5(6) =s(Ll)=1#0=5s(0)

This deficiency is addressed by the axiom 31 in Table 5. We prefer the
axioms for signed meadows to have an equational form with the exception
of AVL in order to be able to use the model theory for common mead-
ows as it has been developed in [23]. The conditional equations 26, 27
and 28 can be easily inferred from the somewhat less intuitive axioms of
Table 5. It is not an option to replace the conditional axioms for weakly
signed common meadows by the equations for signed meadows because
equations 30 and 31 are both invalid in the common meadow of complex
numbers enriched with a sign function given by s(0) = 0, s(L) = L and
s(z) = ﬁ for non-zero, non-_L x, which is the main example of a weakly
signed common meadow we will discuss in Section 4 below.

To see these facts we work in the axiom system of Table 5 as follows:
first notice that by substituting s(x) for z in equation 31 and applying
equation 24 on derives s*(x) - s(z) = s(z).

In order to prove s(z) = 0-y — z = 0y assume s(z) = 0-y. No
z=s*z)-z2=(0-y)> 2= (0-y) z. Moreover from s(z) = 0-y we
find 0-s(x) =0-(0-y) and thus s(0) -s(z) = 0-yand s(0-z) =0-y
and with equation 25 one obtains 0 -z = 0 - y, which in combination with
z=(0-y) - xzyleldsz=(0-y)-y=0-y.

For conditional equation 28 it suffices to apply equation 31: x = sQ(m)~
z=1%z=1.

In order to derive conditional equation 26 we assume s(z) = s(y)
multiply both sides of equation 30 with s(x) for the LHS we find s(x) -

=



import: FEfc—cm

import: FayvL

s(0) =
s(1)=1
s(-1)=-1
s(Ly=1
s(z-y) =s(z) - s(y)

Table 4:  Efc—wsem: axioms for weakly signed common meadows

s(z)-z+s(y)-y) = s(s(x))-s(s fE)(-fE+S(y y)( = s(s* () z+s(2)(s(y) y)) =
s

(
s(z 4 s(y) - (s(y) - ) =s(z +s2(y) -y) = + y). For the RHS we find:
s(@)-((s*(2) +5° () + (= (s> () -s*(1)))) = s(y) - ((s* () +5° () + (= (s*(¥)
s*)))) =s(y) - ((5°(y) +5° () + (=s*(1))) = s(y) - ° () = s(y)-

Another consequence of the equations in Table 5 is s(z + s(x)) =
s(z). A proof is found by substituting s(x) for y in equation 30 and then
multiplying both sides with s(z).

Definition 3.3. A signed common meadow is a common meadow equipped
with a sign function s(—) which satisfies the azioms of Table 5.

So, signed common meadows have the general form
Fi,s = (FU {J-} ‘ Ovl,J—?ery’*-’E»m‘y:ﬂ?/y’S)

On a weakly signed common meadow one may define an absolute value
or modulus function | — | (see Table 6).

3.3 4-signed common meadows

An ordering of a meadow is enforced once it is required that the sign
function can only take one of four values.

Definition 3.4. A weakly signed common meadow is 4-signed if it satis-
fies the following disjunction:

s(z) =0Vs(z) =1Vs(z) =—-1Vs(z)= L.

The notion captures the signed case completely:



import: FEfc—cm

import: EavL

s(0)=0
s(1)=1
s(—1)=-1
s(L)=1
s(z-y) =s(z) - s(y)

s?(x) = s(z) - s(x)
s(s(z) -z +s(y) - y) = (s*(2) +5*(y)) + (= (s*(2) - $*(1))
r=s*(z) x

—~ ~~

w N
o
=

w
—_
~—

Table 5: Efc_sem: axioms for signed common meadows

Proposition 3.1. A weakly signed common meadow is 4-signed if, and
only if, it is signed.

Proof. Let F| s be a weakly signed common meadow. First suppose that
F'| s is 4-signed. In order to show that F'| s is signed it must be checked
that F| o = s%(z) - ¢ = 2. There are 4 cases for s(z) and in each case the
verification is immediate.

For the other direction, we assume that F'| s is signed. Consider = €
F\ . It must be verified that s(z) = 0 or s(z) = 1 or s(z) = —1 or
s(z) = L. If z =0 or z = L said verification is immediate. For non-zero
and non- | x we know that s?(x) -2 = x; thus, in view of axioms 27 and 28
(both derivable from the equations of Table 5), s(z) differs from 0 and
from L so that (with equation 31), s(z)-s(z) = 1. Now s(z) is an element
of a field, equal to its own inverse, from which it follows that s(z) =1 or
s(z) = —1. O

The following fact expresses the soundness of the axioms for common
meadows resulting from an ordered field:

Theorem 3.1. Each ordered field F< can be enlarged to a signed common

meadow A. Conversely, each signed common meadow A is an enlargement
of an ordered field F<.

Proof. First, enlarge F' to a common meadow F| , then enrich F| with a
sign function as follows: s(L) = L, and for a € F: if a > 0 then s(a) = 1,
if a < 0 then s(a) = —1, and s(0) = 0.

10



Conversely, the domain of the required field F' is taken as F' = A—{L}.
The ordering <s on A — { L} is given by

(i) a<sb < s(b—a)=1,

(ii) a = b <= s(a—b) =0 and,

(iii) a <s b <= s(b—a)?> =s(b—a).

From equation 27 we find that a = b implies a = b. It follows from the
definition of a 4-signed common meadow that for all non-1 a and b in F’
either a <s bor a =s b or b <s a.

Reflexivity of = is immediate, and so is antisymmetry of <s. For
transitivity assume a <s b and b <s ¢, then s(b —a) = s(c —b) = 1 so
that s(c —a) =s((b—a)+ (¢ — b)) =s(b—a) =1 (with equation ReSign)
whence a <s c. O

3.4 Completeness for the conditional fracterm cal-
culus of signed meadows

The following completeness result is available:

Theorem 3.2. A conditional equation of the signature of signed meadows
is true in all signed meadows if and only if it is provable from the axioms
of signed meadows (Efc—sem of Table 5) in conditional equational logic
extended with the additional proof rule Rem.

Proof. The proof follows the lines of the corresponding completeness proof
in [23] without any further complication. We notice that the proof uses
model theory for common meadows and that the proof is based on a
characterisation of models of Efc_cm as discussed in [28] and [29]. O

3.5 Equational specifications

The purpose of the equations FEfc—wsem is to specify the essentials of weak
signed common meadows. Among the confirmatory tests is this result:

Proposition 3.2. The equational specification FEfc—wsem constitutes an
initial algebra specification of the data type of weakly signed common mead-
ows of rational numbers.

Proof. With induction on n, mainly using equation 26 one finds for all
n > 0 and corresponding numerals n that Egc_wsenm F s(n) = 1. Then it
follows with equations 22 and 25 that for n > 0: Egc—wsem % = 1, which

is known to suffice from [12]. O

Proposition 3.3. The class of 4-signed common meadows has no equa-
tional specification.

Proof. To see this let Esm be the equational theory of the class of 4-
signed meadows. One may add a new constant ¢ and consider the initial
algebra A of Eem in the signature thus extended. Because each of s(.L),
s(c) = 0,s(c) = 1 and s(c) = —1 is consistent with Esm none of these is
provable from Fsm so that in A, s(—) cannot take values in {0,1,—1}. O

11



4 Complex numbers

One of the most mathematically prominent models of the axioms of com-
mon meadows is an enlargement of a field of complex numbers. The field
of complex numbers cannot be ordered, but it can possess a weak sign
function as a common meadow.

4.1 Common meadows of complex numbers

Recalling Example 2.1, a common meadow of complex numbers has as a
constant i, such that i-i = —1 is satisfied. We set:

EftC—ccm = Eftc—cm @] {| = 71}

The completeness result of [22] may or may not generalise in a straight-
forward manner. This is a question for which we have no answer yet (cf.
Section 8.1).

Problem 4.1. Is Exc—cem complete for the equational theory of complex
common meadows?

4.2 Fracterm flattening for complex numbers

We find that fracterm flattening persists with the expansion of common
meadows to signed common meadows for complex numbers. We notice
that the notion of a fracterm is generic in the sense that it works for each
signature containing (a name for) the division function .

Definition 4.1. A fracterm t is flat if it has the form % where r and s
have no occurrences of the division operator.

Proposition 4.1. (Fracterm flattening.) The specification Efc—cem has
fracterm flattening: for each term t in the signature of complex common
meadows, there is a flat fractcerm r such that Fgc—cem Ft =1.

Proof. 1t is easy to check that the proof of fracterm flattening for fracterm
calculus of [12] works just as well in the complex case. O

One might expect another form of flattening, viz. that each expression
can be written in the form P +i-Q with P and @ flat fracterms over the
signature X, of meadows, i.e., not containing any occurrence of i. That
idea does not work, however:

Proposition 4.2. Let P = ﬁlw, there are no flat fracterms @ and R
over the signature of common meadows such that P = Q+i- R all complex

common meadows.

Proof. Suppose @ and R exist as required and let @ = § and R = § with
a, b, ¢, d polynomials. Suppose that for all complex common meadows and
for all valuations,  +i-y = 0. Then either b or d or both must take value
0 so that x + i -y divides either b or d or both. We assume that it divides
Q the other case being dealt with in the same manner.

We find that b = (z +i-y) -V for some polynomial b’ (for instance

b = x —i-y might work). Now b cannot be a real polynomial and it

12



cannot have only factors x + i - y, so that it must have a different factor
which in some cases (i.e., for some complex common meadow and for some
valuation) has zeroes that are not zeroes for x +i-y so that the RHS of
P = Q+i-Ryields | while the LHS does not, so that LHS = RHS cannot
be satisfied. O

4.3 Sign and modulus

Here the focus is on the weakly signed common meadows.

Lemma 4.1. The common meadow of complex numbers C, cannot be-
come a signed common meadow.

Proof. Suppose C, has a sign function satisfying the axioms Ffc_scm-
Then, by Proposition 3.1, C, is a 4-signed common meadow. By the
proof of the converse clause of Theorem 3.1, C, is an enlargement of the
ordered field whose domain is C = C. — {L}. It is well known that C is
cannot an ordered field because i -i = —1. This is a contradiction of our
assumption. O

Turning to the weakly signed complex meadows, we obtain the ax-
iomatisation Fsfic—seme by extending Efic—wsme With the equations

i-i=—1ands(i)=1i.

A modulus function on signed complex numbers can be introduced as

in Table 6. Notice T =1 — |z| = ;7. Inverting, we note s(z) = 7.

Proposition 4.3. Let C be a field of complex numbers and let C, the
corresponding common meadow. Then C can be expanded with a function
s(—) so as to become a weakly signed common meadow CJ s.

Proof. One may expand a common meadow C, of complex numbers with
a sign function s by defining

s(0)=0and z # 0 — s(z) = ‘%7
with |—| the standard absolute value function for complex numbers (rather
than the general modulus as given in Table 6). The absolute value func-
tion is defined by |z| = ++/Re(2)? + Im(z)2, but note that the real part,
imaginary part and the square root functions do not need to be named in
the signature of the algebra, only s. Now, it is routine to check that all
equations of Egc_wsem are satisfied by the algebra C, . O

Signed complex numbers make use of the idea of polar coordinates.
The range of the sign function s(z) of C s is infinite as all points on the
unit circle S* serve as values of s.

Notice that the resulting structure C, s is not a signed meadow as it is
not a 4-signed meadow. Specifically, the condition that s(x) =0V s(z) =
1Vs(z) = —-1Vs(z) = L, for all z, is not satisfied. To see the latter we
notice that

lil = +v/Re())2 +Im())2 = +/02 + 12 = V12 =1

13



import: Ffic—wsem (32)
[0]=0 (33)
Il =1 (34)

T T
21 = 35
Lot = (35)

Table 6:  FEfca—wsem: (conditional) equations for for weakly signed common
meadows with absolute value or modulus function

and so s(i) = 1 =i.

We do not know if the expansion of C s to a weakly signed common
meadow is unique.

It follows immediately from the equations in Table 5 that fracterm
flattening extends to the fracterm calculus for signed common meadows

of complex numbers.

Proposition 4.4. (Fracterm flattening.) For each termt in the signature
of weakly signed common meadows of compler numbers there is a flat
fractcerm r over the signature ¥\ s of signed common meadows such that
Eftc—ccm Ft=r.

The most plausible interpretation of the sign function being s(z) =
|_””T‘ one finds that square roots come into play for expressing |z|. Given
that square root is partial on the rationals, the rational complex numbers
cannot be extended to a weakly signed meadow using the absolute value
function to define a modulus function | — |. More generally:

Problem 4.2. Prove that a common meadow of complex rational numbers
cannot be expanded to a signed common meadow.

Only in certain (possibly algebraic) extensions of common meadows of
complex numbers it is plausible that a sign function can be introduced.

Problem 4.3. Find an algebraic specification of some appropriate signed
common submeadow of C s.

We expect that auxiliary functions will be needed, such as Re and
Im for the real and imaginary part of a complex number, and a square
root function. Some preliminary work regarding such specifications has
already been done in [8] for the square root, though merely in a setting of
a simpler case. In [17], a specification is given for an involutive meadow
of rational complex numbers.

5 Enlargement of common meadows to
weakly signed common meadows

We will now argue that any meadow can be enlarged to a weakly signed
common meadow. We first consider a simple case.

14



Example 5.1. Let Q(a) be a field of rationals expanded with a sin-
gle transcendental number «. Let Q(a) . be the corresponding common
meadow? Can Q(«). be enlarged to a signed meadow? This is indeed
possible as Q(«) 1 is isomorphic to Q(m) 1 for 7 € R which is a submeadow
of an ordered meadow of real numbers.

This observation can be generalized as follows:

Theorem 5.1. Let F be a field of characteristic 0 with cardinality of the
continuum or less, then F| can be enlarged to a weakly signed common
meadow.

Proof. Let A be a transcendence base for F' over its prime subfield Q and
let B be a transcendence base of C over Q. Choose an injection ¢ : A — B,
which is possible due to the cardinality constraint on F'. Now ¢ extends in
a natural manner to an injection F' — C. Thus, F'| can be isomorphically
embedded in a weakly signed meadow C ¢ from which it trivially follows
that F'| can be enlarged to a weakly signed common meadow. O

Using known results about formally real fields (e.g., see [38]), one finds
that each common meadow which is the enlargement of an ordered field
can be enlarged to a weakly signed common meadow. In fact:

Theorem 5.2. Let F be any field of characteristic 0 then F can be
enlarged to a weakly signed common meadow.

Proof. Let A be a transcendence basis of F' then the extension F(A) is
formally real, i.e., no finite sum of squares equals —1. Indeed, as otherwise,
there would be a non-trivial (possibly multivariate) polynomial with a
solution made up from elements of the transcendence base. Thus, using
the core result of Artin-Schreier theory the field F'(A) can be ordered and
enlarged to a real closed field F'(A).

Subsequently, F’(A) can be once more enlarged by introducing v/—1,
thereby obtaining F’(A,+/—1). The resulting field is algebraically closed
so that F' can be embedded into it — as all elements of F' are algebraic
over the transcendence base A.

On F'(A,+/—1) one may define functions Re and Im for the real part
and the imaginary parts. The norm |—| is given by |a| = \/Re(a)? + Im(a)?
and the sign function is found as s(a) = ﬁl thus obtaining a weakly signed
common meadow F’(A,/—1)1 s which allows an embedding of the com-
mon meadow F; so that F'| may be enlarged to an isomorphic copy of
F'(A,+/—1)1 s which is a weakly signed common meadow just as well. [J

6 Probability calculus

The modern form of the Bayes-Price theorem on inverse probabilities
can be formulated as a modest equation involving division and ordering,
namely:
PY]X) - P(X)

P(Y)
which is often claimed under the constraint that P(Y) > 0. In fact the
theorem was published, refined and first applied by Richard Price; see [3].

P(X|Y) =
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(Xuy)ny =Y
(XNY)uy =Y
XNYuz)=YnNZ)u(ZnX)
Xu(Ynz)=(xYuzZ)n(ZuXx)
XuX=U
XNnX=40

Table 7: Eg,a, symmetric equations for Boolean algebra

The formula can be derived from some simple postulates about probabil-
ity. Indeed the derivations can involve divisions by P(X) thus requiring
the constraint that P(X) > 0 as well, which is often left unmentioned.
Here we will illustrate the use of signed common meadows in (i) providing
an axiomatisation of probability calculus, (ii) providing a formally rigor-
ous statement of the Bayes-Price theorem, and (iii) providing a formal
proof using conditional equational deduction of the theorem.

The totalisation of division allows us to accommodate conditions on
equational formulae, which is needed.

6.1 Axioms for a probability function

First, we determine plausible equations for the postulates that define prob-
ability. Such axioms are given in Table 8. To do this we define a proba-
bility function on a Boolean algebra, requiring it to take its values P(X)
in a 4-signed meadow.

The axioms for a Boolean algebra in Table 7 have been taken (modulo
a change of notation) from [35], where the completeness of these axioms
is shown.

We notice that axiom 50 encodes by way of an equation, 0- P(X) = 0,
the condition P(X) # L. Similarly, since s(z) = 1 encodes > 0, for
probabilities, in view of Axiom 48, s(P(X)) = 1 encodes P(X) # 0.

6.2 Reformulating the Bayes-Price’ theorem

The Bayes-Price theorem, which appears in nearly all introductions to
probability theory (and usually without mention of Price), and which is
often taken for the mathematical core of Bayesian statistics and proba-
bility takes the form of a conditional equation over signed meadows. The
particular property of this form, which seems to be somehow novel, is that
the non-zeroness condition is used fo P(X) rather than for P(Y) (in the
formulation of Proposition 6.2).

Proposition 6.1. The following form of Bayes-Price’s theorem is prov-
able from the azioms of BE ,_ -
PY]X) - P(X)
PX)=1—-PX|Y)= —"F—F——.
S(P(X)) =1 P(X|Y) = 50
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P@)=0
P(U) =1 47
P(X) = [P(X)] 48
P(XUY) = (P(X)+P(Y)) - P(XNY) 49
0-P(X)=0 50

Table 8: Efia_scm: equations for a probability function P into a signed common
meadow

P(XNY)

POXIY) = =55

(51)

Table 9: Conditional probability definition

Proof. First, notice that given s(P(X)) =1,
PX) _ s(P(X))

P(X) s(P(X)) 1

Now, starting with conditional probability in Table 9,

P(X|Y) = PXNY)-1 ();?YY)) 1 (52)
P(XNY)- 553
T PY) (53)
P(XNY) -P(X)
_ PX)
= =) (54)
_ PY]X) - P(X)
RO R
O

A companion to the theorem is the following expansion:

Proposition 6.2. Decomposition of probability into conditional probabil-
ities:

s(P(X)) =1As(P(X)) =1 — P(Y) = P(Y|X) - P(X) + P(Y|X) - P(X)

17



Proof. As in the previous proof, we may use

PX) _ PX)

P(X) PX)

Now, using the Boolean algebra axioms we begin:

P(Y)=P(YNX)U(YNX)) (56)
=(PYNX)+ PYNnX)+P(YNnX)Nn(YNX)) (57)
=PYnX)+P(YNnX) (58)
:P(YnX)~%+P(YmY)-% (59)
_PYnXx) PYNX) -~
- TPX) P(X) + X)) P(X) (60)
= P(Y|X) - P(X) + P(Y|X) - P(X). (61)

O

Formulating the Bayes-Price theorem in a manner which takes care
of division by zero and which is sound in say a structure where division
is a partial function is not entirely trivial. For instance in the Stanford
Encyclopedia entry on Bayes’ theorem [32] the main statement of Bayes’
theorem is given in 1.2 where the left-hand side may be defined while the
right-hand side has no value.

The axiomatisation for probability given above calculus is complete in
the following sense.

Theorem 6.1. A conditional equation E — t = r of the signature of
signed meadows, expanded with a Boolean algebra and a probability func-
tion P is true for all probability functions into any signed meadow if and
only if E — t = r 1s provable from the azioms of signed meadows (in-
cluding AVL and the axioms of Table 5) in conditional equational logic
extended with proof rule Rem, together with the equations for a Boolean
algebra and the equations for a probability function P.

Proof. The proof uses the completeness result for the conditional equa-
tional fracterm caclulus 3.2 above, and the works just as the corresponding
proof in the case of Suppes-Ono fracterm calculus, i.e. the case of involu-
tive meadows in [13]. O

7 Involutive meadows

We consider a simple way of totalising division without the introduction
of a ‘peripheral number’, such as |, 00,400, as in other methods.

Definition 7.1. An involutive meadow is an expansion of a field F by
adding a function + for division, wherein division is made total by having

% =0 for all x € F. The class of all involutive meadows we denote I M.

The name derives from the fact that inverse is an involution: (x~
for all x.

1)71 =z
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The assumption that § = 0 for all x was proposed by Suppes in 1957
in [37] (see also the discussion in [2]) and was studied in detail in by Ono
in 1983 in [34]. For these reasons, we have coined the eponym Suppes-Ono
fracterm calculus for our equational specifications of this semantic option.

Following [34], Suppes-Ono fracterm calculus provides finite and com-
plete axiomatizations of the equational theory as well as of the conditional
equational theory of the class of so-called involutive meadows.

However, one of our main reasons to prefer working with common
meadows rather than Suppes-Ono fracterm calculus, is that, when the
assumption § = 0 is adopted, fracterm flattening fails; this was shown
in [10]. Indeed, the best one can achieve is that all fracterm expressions
can be re-written as a finite sum of flat fracterms, and no upper bound to

the number of summands may be given.

7.1 3-signed involutive meadows

Signed involutive meadows, i.e., meadows that conform the Suppes-Ono
fracterm calculus were introduced in [8] and discussed in [9] and used in
the context of probability theory in [13] and [4]. For involutive meadows
3-signed meadows are the important special case in view of the absence
of 1. 3-signed involutive meadows are enrichments of ordered fields. In
contrast to the case for common meadows a completeness theorem has
been obtained for the 3-signed case (see [8]).

We notice that 3-signed common meadows satisfy the equations of
Tables 4 and 5 with the exception of the equation s(Ll) = L. Trivially,
3-signed common meadows are 4-signed as well. Moreover a definition of
weakly signed involutive cancellation meadows can be given in a similar
way as for common meadows, with corresponding results.

However, in the course of the development of involutive meadows the
naming conventions are somewhat different: involutive meadows are de-
fined as the models of a given set of axioms while involutive meadows that
are expansions of a field are called involutive cancellation meadows. The
above results are all about expansions and enlargements of fields (which
in case of common meadows is taken for granted as a part of the defini-
tion) so that corresponding results in the case of involutive meadows must
be stated with regard to involutive cancellation meadows. With similar
reasoning as for Theorem 5.2, one finds:

Proposition 7.1. Every involutive cancellation meadow of characteristic
0 can be enlarged to a weakly signed involutive cancellation meadow.

Now, as evident in [8], using Suppes-Ono fracterm calculus simplifies
the introduction of a sign function when compared with the case of com-
mon meadows. In [13], it was noticed that an ordering is essential for
developing probability in a setting of meadows.

The precise details of the Bayes-Price theorem depend on the fracterm
calculus which is used. In Suppes-Ono fracterm calculus, a plausible ver-
sion of the theorem can be formulated without making use of conditions;
in the case of signed common meadows, however, a condition seems to be
needed. We note that the axioms of Table 9 are identical to the axioms for
a probability function P into an involutive meadow as presented in [13] —
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import FEfc—em + AVL
r<0>y=y
rdlp>y=.1
r<dy+0-u)>z=(x<qyr>z)+(0-u)
(z4+ 0 -w) <y (z+0-uw)=(x<ay>2z)+ (0-u)
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Table 10: Efc—cond.op: axioms for fracterm calculus with a conditional operator

except for axiom 50 that comes for free in the case of Suppes-Ono fracterm
calculus (i.e. involutive meadows).

Opting for working in common meadows does have its price for we
have no information on a number of questions, which we list in the next
section

8 Concluding remarks

It is plausible to extend the signature of common meadows with a con-
ditional operator. In particular we propose to work with x < y > 2
understood as “if y = 0 then z else x, where L is returned if y = L. The
conditional operator is not strict in all arguments, e.g. 0 <1 > 1L = 0.
Nevertheless it is easily shown from the axioms in Table 10 that for a # L,
¢a(x) =+ 0-a is a homomorphism w.r.t. the conditional operator. It
follows that the completeness result for the conditional equational logic
of common meadows of [23] can be generalised to the signature expanded
with the conditional operator.

8.1 Open questions

In addition to the problems noted earlier, we are unaware of the answers to
the several algebraic and logical questions. An obvious algebraic question
arising from the Theorem 5.2 for characteristic 0 is this:

Question 8.1. Can every common meadow of any characteristic be ex-
panded to a weakly signed meadow?

Turning to axiomatisations there are several technical questions we
would like to answer. First, the role of conditional equations is quite
prominent in the signed case. In the case of common meadows, from [20],
we know that the conditional equation

@E(i:l—>0~x:x)

is true in all common meadows while it cannot be derived from FEfc_cm.
Together with the completeness of Egc—cm we find that @ is not derivable
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from the equational theory of common meadows. We have no information
concerning the following question:

Question 8.2. Does the conditional equational theory of common mead-
ows possess a finite (conditional equational) basis?

In the signed case similar questions are open for common meadows:

Question 8.3. (i) Does the equational theory of weakly 4-signed common
meadows possess a finite (equational) basis?

(ii) Does the conditional equational theory of weakly 4-signed common
meadows possess a finite (conditional equational) basis?

(#i1) Does the equational theory of signed common meadows possess a
finite (equational) basis? (The issue is to do without an additional proof
rule such as Rem.)

(i) Does the conditional equational theory of signed common meadows
possess a finite (conditional equational) basis?

Perhaps the major open question that comes about from our paper is
Problem (iii) from the Questions 8.3. A positive result, if ever obtained,
extends the result of [8] and [9] for common meadows to the case of signed
meadows.

A consequence of a positive result is that the axioms for the probabil-
ity calculus, based on signed common meadows are comparable with the
axioms for probability calculus based on Suppes-Ono fracterm calculus (as
expounded in [13] and [4]). A negative result on question (iv) will imply
that signed meadow based probability calculus requires an infinite axiom-
atization, or as is done above, the use of an additional proof rule (such as
Rem) which is specific for classes of algebras with a 0 and a product - - -
such that £ # L — 0 -z = 0 always holds.

In practice one needs an informal account of elementary mathematics.
A perspective of informal accounts of elementary arithmetic, and initial
steps regarding the systematic investigation thereof, can be found in [24],
where “naive fracterm calculus” is coined as a label for the conventional
daily practice of working with fractions, and in [25], where “synthetic
fracterm calculus” is coined as a label for an informal account of elemen-
tary arithmetic which is closer to the well-known intuitions of first order
logic. We expect that the axiomatisation of probability calculus given
above may serve as the logical background for an informal exposition of
the basics of probability theory in the style of synthetic fracterm calculus
as introduced in [25].
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