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Abstract

Division by zero is a controversial theme. Why is division by zero a
relevant issue and how can this issue be addressed from different perspec-
tives? We use “fracterm” as an abbreviation for “fractional expression.”
Three types of occurrence of the division symbol in a fracterm are dis-
tinguished: prospective occurrence, retrospective occurrence, and formal
occurrence. Mathematics mostly features retrospective occurrences of di-
vision, computer programming gives rise to prospective occurrences, and
so does automated proof checking. The use of division in an axiom system
may indicate the presence of formal occurrences of division.

1 Introduction

The mainstream view on division by zero, say dividing 1 by 0, with one
and zero understood as rational or real numbers, amounts to the idea that
division by zero is not possible because for no known number x is it the
case that 0 · x = 1. To see the latter one notices that clearly 0 · x = 0 and
that by assumption 0 ̸= 1 so that 0 · x = 1 cannot hold.

Because this impossibility is apparently self-evident, the nonexistence
of 1/0 is understood to be much more far reaching than the mere obser-
vation that a plausible value for 1/0 cannot be found among the rationals
and in reals. Given the supposedly “absolute” irrelevance of 1/0, the use
of the latter notation is often perceived as a sign of a lack of understanding
of how professional arithmetic ought to be written.

In most mathematical texts precautions are taken so that for any ex-
pression with division as the leading function symbol, it is known to the
reader (who is supposedly reading the text in the order of presentation)
that the corresponding denominator is non-zero. So the text:
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Let q ̸= 2 and consider the expression e given by e ≡ (p +
3)/(q − 2), and let ....

is acceptable, at least up to the dots, while the text

Choose a number q, consider the expression e ≡ (p+3)/(q−2),
then we know that q ̸= 2 and moreover let ....

is problematic because at the position in the text where e is introduced it
is not known that q − 2 ̸= 0.

Beyond these explanations the mainstream position seems to imply
that even pondering what the value of 1/0 might be shows a lack of un-
derstanding of the topic. A student is soon supposed to grasp the enormity
of even contemplating such options.

I have taken the phrase “philosophical arithmetic” from [1] in order
to propose a larger theme in which this paper may fit. Although [1] is a
practical exposition which nowadays would rather fit under the heading
of applied arithmetic, I believe that philosophical arithmetic provides a
suitable classification of the work in this paper, as well as for various
existing papers on division by zero, including work on number systems
with unconventional peripheral numbers.

2 Story lines about Division by Zero

Let us assume that a person A asks mathematician B the following ques-
tion: What is 1/0?.

What replies by B can be imagined, which replies are plausible, which
replies are relevant and meaningful? I will first sketch four different lines
along which B may respond to this question, depending on B’s views on
the matter. These are four out of a plurality of story lines on division by
zero. I will discuss three patterns of response that B may engage in, in
response to the stated question. The order of presentation follows (my
view on) the order of relevance of the different views.

2.1 No-nonsense approach: 1/0 is a fracterm with-
out a value

1. “What is 1/0?” is an important question which has bothered math-
ematicians and philosophers alike for centuries.

2. To begin with 1/0 is a fracterm. A fracterm is an expression with
division as the leading function symbol. A fracterm consists of a
numerator, in this case 1 and a denominator, in this case 0, and a
function symbol, in this case / for division.

3. A fracterm may or may not have a value, that is, it may or may
not denote a number. For the fracterm 1/0 initially we do not know
whether or not it has a value.

4. The idea is that a/b denotes a number c with the property that
a = b · c. In school we will not come across any number x with the
property that 1 = 0 ·x. In fact we will have 0 ·x = 0 for all numbers
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x that we meet and, we have 0 ̸= 1, so that for all x we get to know
in school it will be the case that 0 · x ̸= 1.

5. In school mathematics, and in fact in most of applied and pure math-
ematics, we will work as if 1/0 has no meaning (is non-denoting).
Moreover it is assumed in general that 0 · x = 0 is a fundamental
axiom.

6. The argument in item 4 is inconclusive in the case of the fracterm
0/0 which might be given value 0. Now, however, we find that any c
which satisfies 0 ·c = 0 (that is any number c which will be discussed
in school) can be taken for the meaning of 0/0. Apparently a form
of non-determinism arises in the case of 0/0 which is unfortunate. In
view of this non-determinism we will work as if 0/0 is non-denoting
as well.

7. Nevertheless some complications arise, for instance one may contem-
plate the equation 1/0 = 1/0. Faced with this “equation” one may
contemplate various options:

(i) 1/0 = 1/0 is not a legal equation because it contains one or more
expressions (in fact two) that have no value, whether or not it is true
is not an issue therefore,

(ii) 1/0 = 1/0 can be accepted as an equation, that is as a legal text,
but it is assigned no truth value.

(iii) 1/0 = 1/0 is accepted as an equation, and in addition it is
considered to be wrong, assuming that about non-existing entities
no true assertions can be made.

8. Making up one’s mind for choosing one of the three options men-
tioned above is not a matter of arithmetic, it is a matter of theory of
language, of philosophy, or of logic. Not engaging in certain judge-
ments, rather than experimenting with debatable semantic options
by itself counts as a credible expression of knowledge of arithmetic

The ambivalence of these options indicates a difficulty in providing a con-
vincing account of the validity and meaning of say 1/0 = 1/0. But for the
non-nonsense approach to division by zero that difficulty is irrelevant just
as much as the existence of a plurality of accounts of the liar paradox is
irrelevant:

Claim 2.1 Just as a user of natural language need not be aware of a
meaningful account of the logic of the liar paradox, a user of the language
of school arithmetic need not be aware of an account of the logic of various
extreme (in the sense of very uncommon) forms of expression in said
language.

Although the no-nonsense approach seems to be self-explanatory, there
is an intrinsic difficulty to it. The basic idea is that an author can use
a fracterm p/q in a text (or any other form of discourse) whenever it is
known that q is non-zero. That raises the questions: (i) on the basis
of which data is this fact known (in particular which data from what
context are used for obtaining that knowledge), (ii) what is the argument
that allows us to infer q ̸= 0 from said data, and (iii) to whom are these
data and the corresponding implication of q ̸= 0 known?
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Claim 2.2 When adopting the no-nonsense approach syntax and seman-
tics become essentially intertwined: an occurrence of the fracterm p/q in
a context C[−] is acceptable if and only if it is known (by reading C[p/q]
from left to right) when reading p/q that q ̸= 0. Thus: whether or not a
text, say C[p/q] is unproblematic (qua text) depends on the value of q.

Below I will discuss what I call Dedekind’s workshop. That is the
set theoretic toolkit which mathematicians use, or claim to use, when
making mental constructions of mathematical realities. Such realities are
understood as being “perfect” by construction, while the language(s) and
notations we use to speak and argue about such realities may be defec-
tive. Mathematicians prefer not to contemplate phenomena which they
perceive as coming about from the choice of language and notation, while
they prefer to focus on the underlying reality (of mental constructions)
which is supposed to be language independent to a very high degree. The
no-nonsense view regards all issues about division by zero as related to
language and notation (that is “nonsense”) and as devoid of content in
relation to the realities (that is mathematics proper) that they manufac-
tured, during the last say 150 years, in Dedekind’s workshop.

Claim 2.3 Implicit in the no-nonsense approach is an underlying notion
of legality for texts which governs which texts can be written and read and
which texts are better dismissed. For instance the question “let x = 0, is
2
x
> 3?” is better dismissed, and as a text it is for that reason illegal.

Formalising the notion of legality is against the spirit of the no-nonsense
approach: the illegal utterances being “nonsense” these are not worth
systematic scrutiny. It is the rule rather than the exception with any (self-
portrayed) no-nonsense approach (to whatever theme) that the question
“what is nonsense” is not paid much attention.

2.2 Transrationals and rejection of the law 0·x = 0

A second story line adopts the idea of transrationals and transreals. In
these versions of arithmetic the presence of a positive infinite value ∞
and its opposite, a negative infinite value −∞ is adopted. These are so-
called peripheral numbers. Besides both infinite peripherals a third one
is needed, named Φ in the original work on transrationals [2], and the
identity ∞ · 0 = (−∞) · 0 = Φ ̸= 0 is adopted.

1. Concerning multiplication with 0 transrationals adopt 0 · Φ = Φ, so
that each of the three peripherals defeat 0 · x = 0.

2. In transrationals and transreals one finds: 1/0 = ∞, as well as
1/∞ = 0.

3. Although working with ∞,−∞ and Φ may be unfamiliar to most
readers, the idea is quite plausible. Transrationals constitute an
abstract model similar to the IEEE 754 floating-point arithmetic
standard.

4. Almost all of computing is nowadays carried out with an arithmetic
where 1/0 = +Inf (the symbol ∞ is uncommon for computer out-
put) and (−1)/0 = −Inf. The suggestion to have calculation or-
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ganised in that manner was originally made by computer pioneer
Konrad Zuse around 1939 (see [4]).

Given the ubiquitous practice with the use of the peripheral num-
ber +Inf in computing there has been remarkably little theoretical
work on that matter. The main approach in this direction, named
transreals, has been pioneered by James Anderson and his colleagues
in a sequence of papers of which we mention [2, 18] and [19]. For
further work in this direction see [14].

In fact one may claim that:

Claim 2.4 1/0 = ∞ is the most wide-spread “answer” on the question
“what is 1/0.

Using 1/0 = ∞ the world of fractional expressions becomes quite com-
plicated and no useful standard forms of such expressions have yet been
found [8].

Program notations always come with a syntax and it is usually taken
for granted that syntactic correctness matters. In the context of com-
puter programming it is highly impractical, not to say computationally
unfeasible, to make correct syntax depend on semantics.

For instance mixing logical connectives and arithmetical functions may
be disallowed so that “expressions” (1+2)∧3, 1∨2

3∧4
, 0
1
∨5 are each rejected.

In the no-nonsense approach it is taken for granted that such “expressions”
are not taken into consideration, while in the formalised world of a pro-
gram notation or a notation for mathematical proofs (that, because of
size and complexity, will be checked automatically rather than by a hu-
man reader), the fact that such expressions are illegal (that is problematic
from the perspective of syntax) is made explicit.

Claim 2.5 If a program notation allows occurrences of division it is not
to be expected that precisely those occurrences of division which would
be considered acceptable (given the context at hand) from the no-nonsense
perspective mentioned above constitute the syntactically correct occurrences
of division.

2.3 Suppes-Ono fracterm calculus

An old idea, first described in reasonable detail by Suppes in [30] and sub-
sequently first studied in depth by Ono in [26] is to adopt the convention
that for all numbers x, x/0 = 0 (which I will refer to as the Suppes-Ono
convention).

The Suppes-Ono convention constitutes a seemingly trivial, if not su-
perficial, way out of the question “what is 1/0” which primarily has merit
in its simplicity. Although adopting the Suppes-Ono convention (that is
setting 1/0 = 0) fails to provide a number p so that 0 · p = 1, which
may be considered undesirable (in view of defeating the desirable “law”
x · (1/x) = 1 for all x), the resulting arithmetic allows straightforward for-
malisation, which is quite helpful if one intends to implement formalised
arithmetic on a computer. There is by now a significant (and steadily
increasing) amount of literature about what I call Suppes-Ono fracterm
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calculus (that is calculating with fractional expressions on the basis of the
Suppes-Ono convention).

Although the Suppes-Ono convention has not been adopted by math-
ematicians (corresponding to the expectations made by Suppes in 1957)
the Suppes-Ono convention has been widely adopted by logicians and
informaticians in the area of automated formalisation and generation of
proofs (for instance 1/0 = 0 is adopted in the proof checking systems Coq,
Isabelle, and Lean).

A systematic effort to investigate the possible role of adopting 1/0 = 0
in mathematics is carried out by a group of Japanese workers, see e.g. [24,
27]. In [5], one may find an account of the presentation of elementary
probability in the context of the Suppes-Ono convention. The latter work
is based on the account of axioms for reals when adopting 1/0 = 0 of [10].
A structure theory of fracterms under this convention can be found in [11].

2.4 (Common) fracterm calculus

With ⊥ an error-element is denoted. Arguably the simplest idea about
division by zero is to adopt: for all x: x/0 = ⊥, together with x + ⊥ =
⊥ + x = x · ⊥ = ⊥ · x = ⊥/x = x/⊥ = −⊥ = ⊥. I will refer to x/0 = ⊥
as the common meadows convention, with reference to [12, 13] where
this option was first studied in detail. Although ⊥ plays the role of an
absorptive element just as Nullity (Φ) in transrationals, both peripheral
numbers differ significantly given that Φ = 0/0 while Φ ̸= 1/0.

The resulting calculus of fractional expressions (common fracterm cal-
culus, or fracterm calculus for short taking “common” as the default)
enjoys so-called flattening: all but one division sign can be eliminated
from any expression. Working with transrationals and Suppes-Ono frac-
term calculus both do not provide fracterm flattening. From a theoretical
perspective the presence of fracterm flattening constitutes a structural ad-
vantage for the conventions of common fracterm calculus which matters
for theoretical work.

Including ⊥ in a domain turns it into a so-called flat CPO (Complete
Partial Order). This transformation is very common in computer science
where it plays a central role in the semantics of programming languages.

The same transformation may be used for the description of partial
functions with f(a) = ⊥ representing that f(−) is not defined on a. How-
ever, there are several alternatives to working with ⊥ for grasping the logic
of partial functions, for instance along the lines of [29], or following [21],
or as in [22].

3 Some general observations

In this section I will look at division by zero from five perspectives: first of
all I discuss why the equation x · 0 = 1 is considered unsolvable. Secondly
I will provide a brief survey of remarks from the educational literature
on division by zero, and thirdly I will discuss the option that division
is understood as a logical connective rather than an arithmetical opera-
tor. Subsequently I will discuss arguments for introducing fracterm as a
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neologism, and finally I will confront Dedekind’s workshop with Peano’s
framework.

3.1 On the equation x · 0 = 1

One may wonder how obvious it is that the equation x · 0 = 1 has no
solution.

1. Consider the equation x+7 = 4. As it stands now the solvability of
this equation is a matter of age: initially in school there is no such x
(admittedly there is no task of solving equations either), and in due
time 4 − 7 is identified as a notation for a negative number which
solves the equation.

In the history of mathematics it took centuries for the idea of nega-
tive numbers to become accepted, and since some 250 years (or even
less) that it is entirely standard.

2. The equation x2 = 2 has no rational solution. A fact known since
Greek mathematics. Solving equations may come with the need to
expand the domain of numbers, in this case with irrational numbers.

3. Next consider the equation x2 = −1 or stated differently: “what
is

√
−1?” Initially in school one works as if

√
−1 means nothing,

although most mathematicians think that
√
−1 constitutes no prob-

lem at all, and that the expression has a very clear meaning, even
two very clear meanings (a positive and a negative one, or rather an
unsigned one and its opposite) so that a choice must be made.

In the history of mathematics it took centuries to accept the ex-
istence of numbers which satisfy x2 = −1, and nowadays, that is
completely standard, though still somehow unknown to the public
at large. It took scholars some 250 years from the first conception
to the standardized use of such numbers. These numbers have been
completely accepted only since about 1800.

4. There can be numbers larger than each integer number, so-called
non-standard numbers. Here “can be” means that number systems
including standard numbers as well as non-standard numbers are
conceivable, and in fact quite well-known. The discovery of non-
standard numbers is some 70 years old by now. Non-standard num-
bers include infinitesimals, which are above zero but below 1/n for
each positive natural number n as well. Infinitesimals are inverses
of infinitely large numbers.

By construction non-standard numbers cannot solve equations for
which there are no standard solutions. Thus the non-standard num-
bers do not allow to solve the equation x · 0 = 1.

5. What I conclude from the mentioned examples is that it is not at
all obvious that the equation x · 0 = 1 has no solution. What can be
said, though, is that number systems in which such solutions exist
have not been studied in any detail thus far. Thus the unsolvability
of x · 0 = 1 boils down to the absence of a mathematical practice
in which such solutions are possible. There is no proof whatsoever,
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however, that designing and developing such a practice is impossible
(unless of course it is ruled out by adopting x · 0 = 0 as an axiom).

3.2 Comments on division by zero from the edu-
cational literature

The educational relevance of division by zero is discussed in detail in [17].
Arguments in favour of the mainstream position are surveyed in [31], the
most convincing argument being referred to as the formal argument: (i)
1/b = c only if b · c = 1, (ii) the zero-multiple theorem (0 · x = 0) is
regarded a fundamental property of numbers. In [23] it is argued that 1/0
may confuse students because it can neither denote actual infinity, nor
potential infinity. This argument suggests to label the peripheral number
∞ an instance of formal infinity.

In [28] a survey is given of opinions of a group of middle school teachers
on division by zero, (which, it goes without saying, the authors consider
impossible). The following argument was found as a teacher’s response
and was considered flawed:

The math police have determined that it is against the law to
divide any number by zero. This is such an important law that
all calculator companies have to follow it. Here is a calculator,
punch in seven divided by zero and see what happens.

In [25] the following remark suggests an awareness that division precedes
its set theoretic definition.

Many of us have heard students remark,“Yes, I can see that
the multiplication problem has no answer. Still, the division
problem should work. Why can’t the answer be zero?” This is a
natural point of view since division is an old friend, whereas the
interrelationship of multiplication and division is often viewed
as a newly discovered coincidence.

I sympathise with this answer. It highlights that a design decision lies
at the basis of an analysis of division by zero. In [25] it is suggested that
a combination of arguments provides the best option for explaining why
1/0 is not defined.

3.3 Division: a function symbol or a logical con-
nective?

If one writes that x = 0 ∨ x ̸= 0 there is no need or even incentive
to consider the disjunction symbol ∨ as an arithmetical operator. It is
plausible to assume that outside the scope of the equality sign(s) logic is
in charge.

I will assume that it is plausible to view division as an arithmetical
function, a function which may be total or partial, and that adopting the
assumption that division should certainly not be understood as an arith-
metical function is implausible. This paper is written under the working
hypothesis that division is understood as a mathematical function.
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However, admittedly one might conceive of division as constituting a
part of the logic, just as negation, conjunction and disjunction are part of
the logic. For instance division may be understood in some cases, that is
for appropriate contexts, as a logical connective rather than as an arith-
metical connective by interpreting an occurrence of p/q in a context C[−]
by means of a tranfsormation (where the context C[−] may include/in-
volve logic as well as arithmetic):

C[p/q] ⇐⇒ q ̸= 0 ∧ ∃x(x · q = p ∧ C[x])

Even if adopting an understanding of the division symbol as a (primarily)
logical connective may on the long run turn out to be the better approach
to a formal understanding of division, I hold that the intuition that divi-
sion is just like addition, subtraction, and multiplication one of a family
of very ubiquitous arithmetical functions cannot be denied plausibility. It
is with the conception of division as an arithmetical function in mind that
this papers has been written, while performing a systematic investigation
of division understood as a logical connective is left for another occasion.

Consider the following context C[−] given by: C[−] ≡ “− = 7” then
C[p/q] ≡ “p/q = 7”. Now an interpretation of the division sign in the
fracterm p/q as a logical connective may yield: “q·7 = p′′. The relevance of
this apparently trivial observation comes from the fact that this particular
logical interpretation of an occurrence of the division operator (symbol)
demonstrates that an occurrence of the division operator symbol need
not necessarily be indicative for an intention to perform an act of division
(that is to compute a quotient), while such an occurrence may just as well
indicate the intention to perform a multiplication in order to verify that
a specific quotient has already been found.

At the logical end of the spectrum of definitions for division one may
consider the use of Hilbert’s ϵ notation: p/q = ϵx.(p = q · x). For infor-
mation on the ϵ notation I refer to [33].

3.4 Fracterm versus fraction

The term “fraction” is ambiguous. In mathematics a fraction is often a
number (as in the field of fractions), and as such it cannot be equipped
with a numerator and a denominator, numbers abstract from such fea-
tures. In educational practice a fraction is often meant to be an expres-
sion, that is a piece of syntax which denotes a number, without being a
number.

Fracterm (see [9] and [13]) denotes the same as fraction though ex-
clusively understood as an expression, that is without the flexibility of
understanding the fracterm as a number, at least not without additional
explanation. Fracterm is a shorthand for what is also called: fractional
expression, though in a fairly liberal sense: 1/0 is a fracterm, whereas not
all will agree that 1/0 is a fractional expression.

The fracterm 1/0 is qualified as not division-safe in [9] (while (4 +
7)(5 − 1) is a division safe fracterm) and 1/0 is labeled a fracpair (in
addition to being a fracterm) in [13]). When we refer to 1/0 as a fracterm
then the question arises what is its meaning? And that question has no
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unique answer, and in particular not the answer that as a mater of course
no such meaning can exist.

If an axiomatic approach to division is contemplated, then unavoid-
ably, one allows writing a/b in advance of having determined its meaning.
The freedom to do so is core to an axiomatic approach. By referring to
1/0 as a fracterm it is implicitly assumed that fracterms (in an axiomatic
approach) exist independently of the meaning assigned to such entities.

Taking a primarily syntactic view of division via the notion of a frac-
term, can be transferred to addition, thus leading to the notion of a
sumterm [7]. Sumterms pose additional complications with respect to frac-
terms, however, because sums of different lengths must be distinguished.

3.5 Dedekind’s workshop versus Peano’s frame-
work

Richard Dedekind (1831-1916) is credited with proposing and achieving
the systematic encoding of the most basic mathematical concepts in (what
is now called naive) set theory. In what I call Dedekind’s workshop all
mathematical notions are in essence set theoretic constructions. And each
mathematician is qualified to create encodings of informal mathematical
notions in set theoretic terms. A function is a set of pairs and so on. For
the case of division: division is a partial function given by a set of pairs.
When using a notation for it, say a/b one must try to achieve best possible
compliance with the underlying set theoretical understanding of division
being the intended meaning of this notation.

In Peano’s framework the most basic functions (addition and multi-
plication) are understood by means of an axiomatic approach. Peano
(1858-1932) himself was uninformed about the degree of freedom left by
his axiom system when he made his design. Clarity about those matters
came with Gödel’s incompleteness result in 1931.

Admittedly the construction of structures which serve as models for
systems of axioms is compliant with the rules of engagement in Dedekind’s
workshop. Peano’s framework does not remove the relevance of Dedekind’s
workshop at all. It is not Dedekind’s workshop at the level of notions of
function and relation which I wish to challenge, but merely the premature
freezing of division in terms of the machinery made available in Dedekind’s
workshop.

In the context of this paper it is worthwhile to notice that the flexibility
of Dedekind’s approach to the definition of number systems is apparent
from [3] where the use of an additional cut allows an elegant definition of
transreal numbers.

4 Retrospective, prospective, and formal
division

In this Section I will outline a distinction between three occurrences of
division in fracterms: retrospective division, prospective division, and for-
mal division. Formal division may alternatively be called neutral division.
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Most occurrences of division in mathematics, including school arithmetic,
may be classified as retrospective. Occurrences in computer programming,
however, are mostly prospective, and occurrences of division in proof sys-
tems as well as in axiom systems are plausibly classified as formal. A
formal occurrence of division calls in question the very idea of division,
possibly leaving room for a plurality of interpretations.

The no-nonsense view alluded to in Paragraph 2.1 above is based on
the idea that fracterms feature retrospective occurrences of division: p/q
represents a number r of which it is known that q ̸= 0 and q · r = p which
the effect that r might (retrospectively) be determined by way of division
so that the notation p/q makes sense (after all). In other words, for each
occurrence of a fracterm p/q some form of retrospection is required for its
justification. That it be known of r that q ̸= 0 may seem an implausible
requirement at first sight, but said requirement makes sense as soon as r
and q share some variables.

A prospective occurrence of division in a fracterm p/q indicates an
intention to perform a division in order to determine a value r so that p =
q ·r. This intention may or may not be combined with an intention to first
check that q ̸= 0 and with a plan on how to proceed if it turns out that r =
0. Prospective occurrences of division occur in computer programming.
Avoiding prospective divisions p/q to be instantiated in cases where q = 0
is both technically and conceptually a non-trivial task, which may fail for
that reason, in which case one is confronted with division by zero in one
way or another. Detecting in advance of a run for a program containing
prospective divisions whether or not these involve division by zero is an
undecidable problem.

A formal occurrence of division in a fracterm p/q arises when taking
the context into account, and in advance of full scrutiny of the occurrence
neither its qualification as prospective nor its qualification as retrospective
is forced upon the reader. Formal occurrences of division may have a range
of different interpretations.

Examples of formal division may arise in various settings: (i) if an
axiom involves a fracterm there may be no commitment to either a retro-
spective or a prospective reading; (ii) if a program (or rather a program
like notation) is used in order to create a logical assertion (for example
as a part of a software specification) there may be no commitment to a
prospective reading of division; (iii) if an unfamiliar text is investigated
and a fracterm p/q is found in the text, it may not be known in advance
which kind of occurrence is meant so that at least initially a formal inter-
pretation may be considered most adequate.

4.1 About division in Dedekind’s workshop

The classical view on division is that division is a collection Fdiv of pairs
((a, b), c) with a, b, c, taken from some number system K involving multi-
plication with domain Ks, such that

((a, b), c) ∈ Fdiv ⇐⇒ a, b, c ∈ Ks ∧ a = b · c

So much is core reality about division. And then for the sake of com-
munication about division human authors and readers use the following
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convention: assuming that there is a c such that ((a, b), c) ∈ f , write a/b
for denoting c.

Thus, so to say outside mathematics as a scientific subject proper
(the world of sets), which is first order logic over a relation ∈ , one
may chose a notation, say / and one may introduce the convention that
given a and b, if a c exists such that ((a, b), c) ∈ Fdiv the notation a/b can
be used for c (which is provably unique, provided 0 ̸= 1). In the absence
of any c with ((a, b), c) ∈ Fdiv that notation should not be used. In the
presence of parameters, with a, b, c expressions, preceding assumptions on
the parameters must imply that b ̸= 0.

Thus, as soon as one claims that one is involved in “doing mathemat-
ics” (at any level), one is supposed to adhere to these rules of engagement
in connection with the use of notations for functions.

Unless one commits to either usage of a logic of partial functions or
otherwise to the idea that all functions are total these rules of engagement
stand in the way of the use of function names in axioms. Indeed, granted
that set theory provides a convincing and unambiguous explanation of
what a function is (a set of pairs serving as the graph of the function) it
is not equally clear how set theory can explain the role of the name of a
function as it appears in one or more axioms.

When it comes to multiplication, addition and subtraction, the math-
ematical tradition shows ample examples of the use of these function
symbols in the context of axiomatisation. It is the combination of ax-
iomatisation with partiality which seems to pose a difficulty. Indeed, that
combination is not supported by first order logic. By working with a ⊥-
enlargement, the project of first order formalisation of partial functions is
simplified, while at the same time formalisation by means of equational
logic is both feasible and attractive.

A path towards a more liberal appreciation of division is brought for-
ward by [20] where it is stated that “fraction” is not a mathematical no-
tion. This remark gives another expression to the idea underlying the pro-
posal to speak of fracterms explicitly. Similar ideas can be found in [32].

4.2 Division as a syntactic element

I will now assume that it is somehow taken for granted that in a/b the
numerator a and denominator b take values in familiar number systems
that is without peripheral numbers. Now the classical argument runs as
follows:

(Given that we know what numbers are being considered):
there is no c such that 0 · c = 1 and therefore 1/0 is non-
denoting.

There is an implicit bias in this argument, namely that a/b is only written
if it is meant to denote “the unique c such that b · c = a”. Precisely with
this assumption semantics (that is the uniform translation of arithmetic
into set theory) is given prominence at the cost of the independent status
of notation.

A human author is unlikely to write 1/0 because there is no practical
context in which that is useful (except in papers about division by zero).
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In a similar manner a mathematical text is unlikely to contain the equation
0 = 0. A presence of that equation is plausible in a text on (the meta-
theory of) equational logic or in a formal proof ready made for automatic
proof checking, but not in an ordinary mathematical text. Wittgenstein
has remarked that the equality sign tends to be used between different
entities only. Indeed mathematicians will only write a = b if that assertion
is somehow informative, which the assertion a = a is not.

So where does the question about division by zero arise and why is it
inescapable? Expressions of the form P/Q occur in computer programs
and when computing, running a program, various substitution results (by
substituting “concrete” values for the variables in P and in Q) of P and
of Q are evaluated in preparation for evaluating P/Q.

Now it may just happen that during a computation Q evaluates to 0.
Avoiding such an event is not easy. Unless one restricts the freedom of
(imperative programming) in a drastic manner (by requiring formal proofs
for the non-occurrence of such events) the matter is just as undecidable as
the famous halting problem is. (The unsolvability of the halting problem
as demonstrated by Alan Turing in 1936 counts as the archetypical first
significant result in theoretical computer science. In 1936 “computer” was
used, however, as a reference to a human professional able to work with
mechanical calculating machines.) The stochastic nature of computing as
a physical process implies that actual computations (on today’s comput-
ers) may deviate from deterministic predictions so that program verifica-
tion may not suffice (in principle) to prevent the occurrence of division by
zero under all conceivable circumstances and with 100% certainty.

4.2.1 Prospective division in floating point arithmetic

So the question then becomes: what is to be done if during some compu-
tation a fracterm P/Q is evaluated and Q is found to be equal to zero?
Over 60 years of extensive and world-wide experience with floating point
based computation over the (digitally represented) reals have now led to
the following conventions (writing +inf instead of ∞ as the latter notation
is uncommon in computing):

if P is positive then P/Q = +inf,
if P is negative then P/Q = -inf,
if P = 0 then P/Q = Φ. Here Φ is nullity in the datatype of tran-

srationals, which provides a simplified model, and at the same time a
simplified design, for floating point arithmetic.

These conventions make sense in a context where division is read in
a prospective manner: the possibility that the denominator turns out to
have value 0 must be taken into account. Doing so can be done in several
ways. The above conventions have been codified in the IEEE 754 floating
point standard, though I use the notation for nullity from [2].

In summary the following Proposition states circumstances which are
amenable for a prospective reading of division.

Proposition 4.1 The occurrence of an expression P/Q may express an
intention to divide P by Q just as well as it may express (at the same
time) the result of having (successfully) divided P by Q. The intention to
divide P by Q (for example in the mind of a computer programmer) may
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precede becoming aware that Q = 0 which may in some cases stand in the
way of obtaining a convincing outcome.

A programming mistake may give rise to a program fault which in turn
causes the occurrence of an evaluation of P/Q in circumstances where
Q evaluates to 0, thereby triggering an exception or a run-time failure,
or the creation of a peripheral value. Needless to say that in times of
ubiquitous hacking and fraud the phenomenon of intended occurrences of
division by zero caused by fraudulent but seemingly innocuous occurrences
of prospective division must be taken into account.

4.2.2 Prospective division versus intended division

Most occurrences of a fracterm P/Q in computing are prospective: indica-
tions of a plan to perform actual divisions in the future, in a context where
that parameters in P and Q have all be assigned a value. More often than
not prospective division (as present in a program text) are expected to
be instantiated into actual divisions many times in the run of a program,
and the program is expected to run many times in the future. From the
perspective of prospective division the following is uncontroversial:

Proposition 4.2 No intended division takes the form of an occurrence
of a fracterm of the form P/0.

The question about division by zero can be made “operational” as
follows:

Given a fracterm P/Q, presumably involving parameters (vari-
ables). What is the value (result of evaluation) of P/Q with
a parameter substitution σ to the variables in P and in Q for
which σ(Q) = 0. (Here the substitution σ may be unintended,
that is the author of the fracterm P/Q expected P/Q not to
be evaluated for σ).

This question matters especially in cases where it is not obvious in advance
that a substitution σ so that σ(Q) = 0 exists within the given context.

Proposition 4.3 The precautions having to do with setting values for 1/0
as described in Paragraph 4.2 can be entirely justified, as well as histor-
ically explained, by the phenomenon of unintended actual occurrences of
division by zero which come about from instances of intentional prospective
division.

One may think in terms of the notion of a descendant of a prospective
division (that is a fracterm which constitutes part of a design). The pres-
ence of a fracterm in a process (for example a program) may have as de-
scendants actual divisions among which there are instances of division by
zero. Unless a program (or its compiler) performs formula manipulation,
descendants of a prospective division are simply substitution instances of
it.
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4.2.3 Formal division for proof checking

The situation with proof checking is somewhat different. Proof checkers
must determine if a proof is valid. Understanding why a proof was written
the way it is, is not the issue at hand. A proof checker must be able to deal
with “proofs” in which the author tries to deceive the checker. Taking for
granted that in a candidate proof which involves an expression P/Q the
author has guaranteed beyond any possible doubt that Q ̸= 0, defeats the
very idea of proof checking. A proof checker will come across the need
to check candidate proofs where P/Q is used in a way which does not
conform to the requirements of conventional mathematical rigour. As it
turns out doing so is made easier by adopting the convention that P/0 = 0.
This convention, when used for proof checking can be classified as formal.

Worries about adverse impact of assuming 1/0 = 0 need not exist.
Suppose one is contemplating a proof about numbers (rational, real, com-
plex, quaternion) which takes the form of deriving an equation t = r from,
say finitely many (an inessential restriction), equational assumptions col-
lected in E, and suppose the proof and assertion have been written within
the mainstream style of handling division by zero. Then the following can
be guaranteed upon assuming 1/0 = 0, or more generally upon assuming
x/0 = (x · 1)/0 = x · (1/0) = x · 0 = 0:

(i) under the “new” interpretation the assertion t = r is also correct,
assuming the proof (as given as input to the proof checker) was valid,

(ii) a valid proof remains valid,
(iii) a problematic proof (understood from the mainstream perspec-

tive) may become unproblematic, in which case an easy rewrite of the
problematic proof will turn it into a proof which is unproblematic from
the mainstream perspective as well.

Proposition 4.4 During proof checking an occurrence of a fracterm P/Q
may be encountered with insufficient precautions made about Q being non-
zero. Provisions may be made for that situation. The (formal) reading of
x/0 as 0 is one of these options.

Negative proof author/designer intentions must be taken into account as
well, however, and may also cause problematic use of fracterms.

4.2.4 Formal division in an axiom system

The axioms of fracterm calculus in Table 1 constitute an example of formal
use of the division sign. In advance of designing that axiom system it is
unknown which models it will have.

Common fracterm calculus is the fracterm calculus of common mead-
ows as proposed in [12] and as discussed in [13]. Table 1 lists equations for
FTC following the presentation of [15]. We notice that these equations are
not logically independent. Instead the design is such that: (i) the first 11
axioms can be considered as an independent module (see [15] for further
information on that matter), (ii) the axioms 12-17 serve the purpose of
fracterm flattening as clearly as possible, while (iii) axiom 18 is needed to
obtain completeness for a meaningful class of structures.
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(x+ y) + z = x+ (y + z) (1)

x+ y = y + x (2)

x+ 0 = x (3)

x+ (−x) = 0 · x (4)

x · (y · z) = (x · y) · z (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = (x · y) + (x · z) (8)

−(−x) = x (9)

0 · x = 0 · (x · x) (10)

x+⊥ = ⊥ (11)

x =
x

1
(12)

−x

y
=

−x

y
(13)

x

y
· u
v
=

x · u
y · v

(14)

x

y
+

u

v
=

(x · v) + (y · u)
y · v

(15)

x

(uv )
= x · v · v

u · v
(16)

⊥ =
1

0
(17)

1

1 + 0 · x
= 1 + 0 · x (18)

Table 1: FTC, fracterm calculus for common meadows
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4.2.5 (Formal) division as an action

One may prefer to understand a division as an action:

Definition 4.1 A division is the act of calculating a value for a fracterm
P/Q.

This definition is vague in various ways:
(i) it is not clear from the definition which outcomes count as values.

Is 3 − 1 acceptable as the result of calculating 8/4. And if so, is 4/2 an
acceptable outcome of performing the division 8/4?

(ii) Action is not a mathematical notion, although there is a plurality
of theories of action in existence. It is not obvious that definition 4.1
makes sense without a notion of actor.

(iii) Speaking of action suggests a notion of state transition, again not
a classical aspect of elementary mathematics.

(iv) The notion of calculation is intimately connected with the idea of
preferred notations for values. So we may say that calculating a value is
finding a preferred notation for the value to be calculated. Now 1/2 may
very well be the result of calculating 1/2, but that result may also be 0.5
depending on the preferences for notation one has embraced.

If division is meant as an action, that reading of division might well be
classified as a formal reading of division, because it raises the question
what type of action is involved? If the action is atomic it will not involve
a test that the denominator is non-zero, and otherwise if the action is
non-atomic: how does it decompose?

4.3 Summary: connecting the four story lines on
division by zero with classification of division

The four views (story lines) on division by zero as outlined in Paragraph 2
above are connected with the classification of division in the following
manner:

1. The no-nonsense view is based on the retrospective reading of divi-
sion.

2. Taking 1/0 = +∞ captures the current preference for dealing with
division by zero in computer programming. Division in computer
programming is understood as prospective division.

3. Adopting 1/0 = 0 provides a very simple understanding of division
as formal division which is helpful for (design of and use by) proof
checking systems.

The Suppes-Ono convention can in principle be used for the inter-
pretation of prospective division, but there seems to be no example
of that use of it in practice.

4. Adopting 1/0 = ⊥ provides a formal understanding of division which
has the following virtues:

(i) closeness to the intuitions of the no-nonsense approach,
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(ii) providing an adequate model of prospective division in most
electronic calculators,

(iii) admitting a convincing axiomatisation in terms of equational
logic.

The common meadows convention (1/0 = ⊥) allows a perspective
on formal division which avoids the complexity of transrationals and
transreals, and which avoids the somewhat counter-intuitive sim-
plification of the Suppes-Ono convention, while admitting fracterm
flattening which matters a lot because fracterm flattening formalises
an uncontested intuition from the no-nonsense approach.

5 Concluding remarks

In the concluding remarks I will first discuss the possibility of a paradigm
change regarding division by zero. Subsequently I will comment on the
relevance of syntax. Then I will be more precise about what constitutes
the mainstream (no-nonsense) approach to division by zero. Finally I will
comment on potential relevance of the plurality of perspectives on division
by zero for teaching arithmetic at an elementary level.

5.1 A paradigm change on division by zero, can
it happen?

A paradigm change on division by zero would occur if
(a) the prospective reading of division obtains an equal status with

the currently dominant retrospective reading while leaving some limited
room for a formal reading, and

(b) if a choice between these different readings must be made that
choice is understood to depend on the context, while

(c) the logical intricacy of each of the different readings is acknowl-
edged.

The mainstream position in mathematics regarding division by zero (re-
ferred to above as the no-nonsense position) is defended by a large commu-
nity of individuals who seem to think that whoever challenges the main-
stream position on division by zero is deeply misguided. The certainty
about the mainstream position and what it has to say about division is so
strong that no need is felt to be explicit about the view on division which
drives the mainstream position regarding these matters.

Given today’s scientific consensus about division by zero, is a paradigm
change concerning division by zero conceivable? How frequent are paradigm
changes in logic and mathematics? What makes them happen? I see the
following sequence of paradigm changes (without any claim to historical
adequacy and completeness, just to establish that paradigm changes do
occur in mathematics just as elsewhere in the sciences):

(i) Dedekind explains many concepts from mathematics in terms of
(naive) set theory (around 1880).
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(ii) Cantor develops set theory into an independent mathematical the-
ory (around 1890). An axiomatic basis, for which the need is firmly es-
tablished by Russell, is given in the form of Zeremelo-Fraenkel (ZF) set
theory (or ZFC, ZF with the axiom of choice).

(iii) Grothendieck and many others reformulate much of mathematics
in terms of categories (from say 1950 to 1980).

(iv) Potentially: elementary mathematics frees itself from set theory
(mainly driven by the ever increasing role of automated computing in
mathematics and logic).

It is the fourth paradigm change in this list which I expect to take place
in due time and which creates a context for the work in this paper. A
fourth paradigm change may well be imminent, but it may work out quite
differently for instance in the direction of univalent type theory which
constitutes a much more ambitious and far-reaching endeavour than the
path towards increased levels of by now traditional formalisation which I
have in mind.

5.2 On syntax regaining 1st class status

As part of said paradigm change, I imagine loosening the grip of set theory
on elementary mathematics. Understanding arithmetic as a story about
set theory assigns too much importance to the semantics of the formalism,
thereby creating the counter-intuitive illusion that whoever writes 7+5 =
12 is in fact thinking about a fairly complicated translation pdna2ZF("7+
5 = 12") of this assertion into ZF set theory. And the same is expected
of readers. Here “pdna“ stands (ad hoc) for “positive decimal number
arithmetic”, and “2” abbreviates “→” as a mapping. The translation
from arithmetic into set theory (here named pdna2ZF) came about from
the efforts of Dedekind and matured during the subsequent formalisation
of set theory.

5.3 Principles of conventional school arithmetic

School arithmetic seems to be firmly based on a retrospective understand-
ing of division. Some further comments are in order.

I assume that readers are comfortable with the notion of a structure,
say Q(/) involving zero (0), one (1), addition (+), opposite −, subtraction
(a derived operator given by x − y = x + (−y)), multiplication (·), and
division (/). Q(/) is a partial algebra because division is a partial function,
for no value of x, x/0 is defined (that is there is no pair of the form
((x, 0), y) contained in the graph of the division function.

Claim 5.1 (Conventional school arithmetic on division.) Conventional
school arithmetic (reagrding division) constitutes an informal methodology
for working with and writing about the (partial) datatype Q(/) thereby
making use of:

(i) the constants for decimal natural numbers,
(ii) an equality sign (=),
(iii) the absence of a firm commitment to the use of a two valued logic,

and
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(iv) a tradition of avoiding making a distinction between syntax and
semantics,

(v) a fairly strict imperative that expressions may only be used if the
existence of a value is guaranteed by “preceding” (logically, textually, or
temporally) assumptions regarding the context at hand,

(vi) an open mind regarding the form and the quality of the guarantees
mentioned in (v).

It is worth mentioning that when it comes to expressions with free
variables and working within the mainstream approach the notion of valid
syntax becomes connected with either a notion of mathematical truth
(how to know if a fracterm P/Q may occur in a text), or a notion of proof
(how to prove that a fracterm P/Q may occur in a text). Both options
impede making a clear distinction between syntax and semantics. That
distinction is available for the other seemingly more complicated but in
fact simpler approaches to equality in the presence of division (or of any
other partial function).

Claim 5.2 Elementary school arithmetic defeats being formalised.

To substantiate this claim I consider text fragments in an exposition of
the form: given are some x1, . . . , xn ∈ Zd (the decimal integer, see [7]),
sof which various properties may have been established already. Now we
consider text fragments of the following form:

“Let the rational number y be given by y = (17 + u)/t(x1, . . . , xn). We
consider the quality (mainstream style adequacy) of this text fragment
depending on t(x1, . . . , xn). We will consider three special cases:

(i) t(x1, . . . , xn) ≡ 275 in this case there is no issue because it is well-
known that 275 ̸= 0,

(ii) t(x1, . . . , x4) ≡ x2
1 + x2

2 + x2
3 + x2

4 + 1. Again there is no problem
because sums of squares in Zd will not be negative.

(iii) t(x1, . . . , x4, y1, . . . , y4, z1, . . . , z4) ≡ (x2
1 + x2

2 + x2
3 + x2

4 + 1)587 +
(y2

1 + y2
2 + y2

3 + y2
4 + 1)587 − (z21 + z22 + z23 + z24 + 1)587.”

Now a type checking system which easily settles this sort of matter for
an arbitrary exponent is no less than an AI system able to settle Fermat’s
last Theorem all by itself. Of course that particular achievement can be
established by now with sufficient access to the mathematical literature,
the problem having been solved. However, Hilbert’s 10th problem being
undecidable in the general case there is no other way than to ask for a
proof that t(x1, . . . , xn) cannot be equal to 0. Formalisation won’t work:
either incompleteness or inconsistency is to be expected.

5.4 Teaching about division by zero

Division by zero as a theme is intriguing. The main message about it may
consist of the four story lines of Section 2. These matters can be taught
in school at an early stage.

A survey on division by zero that may be helpful for readers who
take a further interest in these matters can be found in [6]. Experiments
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with the application of Suppes-Ono calculus in forensic reasoning are re-
ported in [5]. The Suppes-Ono convention is nevertheless unattractive for
teaching arithmetic at an elementary level because the clarity created by
adopting 1/0 = 0 does not outweigh (in an educational setting) the lack
of intrinsic conceptual motivation for that assumption.

At the other side of the spectrum of logical complexity transrationals
incorporate relevant conceptual aspects of current approaches to floating
point calculation, but introducing such complexities at an elementary level
of education is implausible.

I expect, however, that (common) fracterm calculus (that is the con-
sequences of Table 1) will provide useful elements for the further develop-
ment of an educational practice which goes beyond the current focus on
the no-nonsense approach.
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