
Transmathematica DOI Prefix 10.36285 ISSN 2632-9212

Accusations in the Context of Computer Programming

Jan A. Bergstra
j.a.bergstra@uva.nl, janaldertb@gmail.com

Informatics Institute, University of Amsterdam,
Science Park 904, 1098 XH, Amsterdam, The Netherlands

Marcus Düwell
mduwell62@posteo.net

Institute for Philosophy, Technical University of Darmstadt, Germany

Submitted: 31 January 2022
Revised: 3 October 2022

Abstract

We imagine a minimal context where a programmer A serves as the provider of a program X for a user B.
A survey is given of plausible promises and accusations in connection with the delivery and deployment
of X. When X is used, various problems may arise. The focus of the paper is on the role of accusations
which may plausibly arise in various scenarios. We discuss different accusation patterns that may occur
outside informatics and see whether such patterns may appear in the context of programming as well.

1 Introduction
Writing about promises, threats, and accusations in the context of instruction sequence theory provides two
characteristics which we wish to exploit: (i) computer programming provides many examples for promises
and threats, and (ii) transactions between a programmer and a user provide ample opportunity for making
accusations by either side.

In what follows, a program will be understood as a digital entity which qualifies as a program according
to the definition of (computer) programs given in [8]. In brief the definition states that a program is an entity
which obtains its meaning by way of a translation to a repeating single pass instruction sequence in the
program algebra notation of [12, 14] and [13].

1.1 For informatics: promise of fact is prior to fact
In promise theory as proposed by Mark Burgess (e.g. [16]), the messaging of a fact acquires the sta-
tus of a promise. This may sound counterintuitive but the argument is convincing. Consider a database
Ddb which contains the information that “the address of person Pperson is aaddress. On request of agent
B the database may now issue promise p with promiser Ddb, promisee Bperson, content (also body):
address−of(Pperson, aaddress). and with Ddb and Bperson in scope.

© J.A. Bergstra & M. Düwel 2022 Licence CC BY-SA 4.0

https://transmathematica.org
https://transmathematica.org/index.php/journal/Paper_69
mailto:j.a.bergstra@uva.nl
mailto:janaldertb@gmail.com
mailto:mduwell62@posteo.net
http://creativecommons.org/licenses/by-sa/4.0/

From the perspective of Ddb the assertion ϕ ≡ address−of(Pperson, aaddress) is epistemic in the sense
that this response is at best in accordance with the most recent information available to Ddb. Whether or not
ϕ is actually true is not known to Ddb, and is not at issue for Ddb.

In [24] the epistemic modality (fact according to some agent), is distinguished from objective modality,
and objective modality ramifies into a spectrum of modalities among which metaphysical modality and
nomic modality. The latter two modalities may be explained in terms of necessity or possibility. Suppose
one understands ϕ as the necessity that (at present) address−of(Pperson, aaddress), or stated differently
the negation of the possibility of ¬ϕ. Metaphysical modality is about the principled imagination that ¬ϕ
would be valid, whereas nomic modality is about the compossibility of ¬ϕ with the laws of nature. Suppose
it is known that updates reach Ddb with a certain speed then at some instant of time it may be the case
that ¬ϕ is metaphysically possible (the update of a new address for Pperson may not yet have reached the
database, while ¬ϕ is nomically impossible because the update mechanism works in such a manner that an
update must have been processed at the moment promise p is being made, and in addition it is known that
the change of address of Pperson cannot have been very recent.

For informatics, at least as far as its application is concerned, promise serves as a modality which is
agnostic of underlying modalities. For an agent C1 in scope of Ddb the promises that it produces may be
merely epistemic, that is, they may be more informative about the database itself than about the person about
whom information is sought. For C2 there may always be the metaphysical option, to doubt whatever might
be doubtful, whereas for C3 the same database may be just a piece of laboratory equipment which primarily
is to be understood by way of the laws of nature. In summary:

Claim 1.1. (Factual promise priority.) Taking computed output as a promise of fact is prior to taking it as a
fact.

When contemplating promises about programs the three modalities: epistemic, metaphysical, and nom-
ical each have a role to play. However, in general a promisee may not know which of the modalities (if any)
a promiser has in mind when making a promise.

1.2 Promises in connection with programs
We will work with a rudimentary agent model: a programmer, say A, manufactures a program for a user,
say B (representing a user community), and some agents in scope of the process, (for example a common
manager Ma,b of A and B, and/or some certification authority C, or a representative member of the user
community, and/or a lawyer known to A and B). The basic promise in programming is that a programmer
feels that a job has been done.

1.2.1 Primary promises: program checkout and program checkin

Two promises, that is promise types, will be considered primary promises in connection with programming,
program checkout promises and program checkin promises.

Program checkout promise: (programmer) A promises to (customer/user) B (with scope U) that pro-
gram X provides a satisfactory solution for the problem captured in requirements Sreq.

For the use of checkout in programming see e.g. [18]. Checkout may take place on the basis of a
programmer’s subjective assessment that the job has been “done”. In the latter case the promise uses an
epistemic modality. However, it may also be the case that the programmer has proven beyond any doubt that

2

X correctly implements Sreq in which case the promiser may claim metaphysical necessity of the claim that
“the work is done”. Alternatively in cases where the program interacts with physical reality (for example the
control of an embedded system in an airplane, or the control of a robot) nomical necessity of the correctness
of the system may be what A intends to communicate.

Claim 1.2. (Checkout promise priority.) The program checkout promise is prior to any agent’s awareness
of the modality.

Indeterminacy of the modality of the promise body will be present in most promises and for that reason it
will not be mentioned explicitly below. Acceptance is primarily a matter for the customer/user of a program.
In [22] it is made explicit that acceptance comes with a customer side perspective and it is also emphasised
that the notions involved are quite informal. Acceptance is complementary to checkout. In view of this
complementarity we uses checkin promise rather than acceptance promise.

Program checkin promise: (customer/user) A promises to (programmer) B (with scope U) that program
X provides a satisfactory solution for the problem captured in requirements specification Sreq .

The program checkin promise may also be referred to as program acceptance promise. The latter phrase
comes with a disadvantage, however, that acceptance testing is often considered a task for the software
developer. Checkin does not give rise to such confusion. The program checkout promise does not require
a specific methodological underpinning. We use “delivery” if some model for software quality assurance is
available and is being followed.

Program delivery promise: (programmer) A promises to (customer/user) B (with scope S) that program
X provides a satisfactory solution for the problem captured in requirements specification Sreq and that its
delivery in the given state is in accordance with specified guidelines G to that extent.

1.2.2 Secondary promises for programming: requirements specification and technical specification

Prior to an exchange of X the programmer and the customer/user are likely to exchange a requirements
specification Sreq and a technical specification Stech.

Requirements proposal promise: (customer/user) B promises to (programmer) B (with scope U) that
their needs are captured in requirements specification Sreq .

Requirements acceptance promise: (programmer) A promises to (customer/user) B (with scope U) that
their needs as captured in requirements specification Sreq constitute an adequate starting point for designing
a corresponding technical specification Stech.

Technical specification checkout promise: (programmer) A promises to (customer/user) B (with scope
U) that their needs as captured in requirements specification Sreq are adequately dealt with in technical
specification Stech.

3

Technical specification acceptance promise: (customer/user) B promises to (programmer) B (with scope
U) that their needs as captured in requirements specification Sreq are adequately dealt with in technical spec-
ification Stech as proposed by A.

Many more promises can be imagined in connection with computer programming and with the use of
computers.

1.3 Promise: an unnecessarily complicated modality?
Promise theory according to [9] views a promise, say p, as an entity under some description which originates
from a promiser, say agent A, is directed towards a promisee, say agent B which has a body β containing
the content of p an a scope, say S which is a collection of agents at least including A.

Promise theory takes the notion of a promise as a primitive. One may understand the notion of a promise
as a relation having at least two agents and a proposition, that is the body, as arguments. The fact that β has
been promised may be understood as a modality, though without any assumptions about an underlying logic.
Promises involve epistemic modality, and are remote from objective modalities (see for example [24] for
an account of a distinction between objective modality and epistemic modality). We consider the following
notations:

• ⊞B,S
A β: it is the case that A promised (with scope S) β to B,

• p⊞B,S
A β: a named promise: ⊞B,S

A β and this promise carries name p,

• ⊞B,S
A +β: it is the case that A promised (with scope S) to offer service β to B, (named version

p⊞B,S
A +β),

• ⊞B,S
A −β: it is the case that A promised (with scope S) to accept service β from B (named version

p⊞B,S
A −β),

If there is a plausible notion of obligation, say OAβ for A is obliged to see to it that β, then promising
will not create an obligation for the promiser:

3(⊞B,S
A β ∧ ¬OAβ)

Promising may have a side effect on trust (see also Paragraph 1.7 below) which is in part determined
by the promise being kept (in the perception of the promiser). Promising may also have a side effect on
expectations which is in part determined by a level of trust.

• ⊞B,S
A β ∧ trust>a

B A → expect>b
B ϕ: if B has significant (say more than a) trust in A and A promises

β to B then B will have a significant (say more than b) expectation that ϕ will be true or will become
true.

• ⊞B,S
A β ∧ trust<u

B A → expect<v
B (EAβ): if B has low (say less than u) trust in A and A promises β to

B than B will have a significant (say less than b) expectation that ϕ will become true due to A. Here
Eaϕ expresses that A causes ϕ to be true (following [23]).

We do not claim that a convincing modal logic of promises exists or can be found. The idea however is that
the primary effect of promising consists of the impact that a promise has on the expectations of the promisee

4

as well as the expectations of the agents in scope. Said impact may vary in time in various ways. We assume
the following laws of the dynamics of expectations.

From a logical perspective choosing a relation of such complexity as a primitive requires a motivation.
In some cases one can imagine that β is unique in time and space, which is characterised by a channel c via
which β is communicated:

⊞B,S
A c : β: it is the case that A promised (along channel c and with scope S) β to B. Now one may

assume:
⊞B,S

A : β ⇐⇒ ∃c[⊞B,S
A c : β]

moreover, assuming that c allows the communication of a unique promise only one may contemplate that
a conjunction of two simpler modalities, both involving fewer agents as arguments, suffices to explain the
notion of promise:

⊞B,S
A c : β ⇐⇒ (∃a[⊞B,S

a c : β]) ∧ (∃b[⊞b,S
B c : β])

Now two simplified modalities can be imagined:

⊞B,S
⋆ c : β ≡ ∃a[⊞B,S

a c : β] and ⊞⋆,S
A c : β ≡ ∃a[⊞B,S

a c : β]

both with fewer agent arguments, so that

⊞B,S
A c : β ⇐⇒ ⊞B,S

⋆ c : β ∧⊞⋆,S
A c : β

However, the idea that promising can be expressed as a conjunction of simpler modalities is unwarranted
and the program checkout promise provides an example to the contrary: consider an instance of the program
checkout promise

p⊞B,U
A [program X implements Sreq]

Promise p is unsurprising (say for agent C ∈ U) only if (C believes that) A knows for what purpose B will
use X , (unless C believes that A intends to deceive B).

In fact promise p can only be properly justified under a bundle of additional preconditions: (i) that A
understands Sreq (more often than not an informal document), (ii) that A understands what, according to
B it means that Sreq is implemented by X , (iii) that B understands what kind of credibility this kind of
promise from A can be assigned, (iv) that A is aware of the implications for agents in scope S if they adopt
promise p by expecting that X will be used by B for its intended objectives.

1.4 Promise versus obligation
Promise Theory (PT) aims for a formal understanding of promising without any assumption of the creation
of obligations by consequence of an act of promising. It is hypothesised that promising is a tool for volun-
tary cooperation in the absence of side effects regarding obligations, in a context of animate agents as well
as in a context of inanimate agents. It is important to understand that PT is primarily an approach for the
investigation of the role of promises in communication and particularly in the context of computer program-
ming. PT does in that sense not strive for a comprehensive account of promises which would require much
broader discussions in moral and social philosophy. Perhaps the analogy with Kant’s distinction between
philosophy of law and virtue ethics is informative for understanding the aim of PT. In the context of the
law the role of promises can be described without referring to the concrete psychology and the motivational
structure they may have for human agents. A virtue ethics, however, would have to understand in a more
comprehensive way how promises are embedded in the self-understanding of agents. The latter theme may
be vacuous for certain classes of non-human (for instance artificial) agents. In a human context an account

5

of promises will raise a lot of questions regarding the relationship between promising and a sense of obli-
gation. It is important to see here, however, that promiser, promisee, and agents in scope of a promise may
entertain entirely different views on the quality, form and persistence of obligations which supposedly arise
from promising. PT does not aim to give definitive answers to those questions but provides a conceptual
framework that facilitates a nuanced way to discuss those questions. In the case of computer programming
there is ample room for promises which create and interact with expectations rather than obligations.

1.5 Threats as counterparts to promises
A threat is a negative counterpart to a promise. Threats play a significant role in computing, in particular
in the context of security threats, but less so in computer programming. Threats are discussed in more
detail in [5] and the reference cited there (see also [2] for the concept of threat). We suggest the following
notations: p⊟B,U

A β for a named threat (name p) issued by A to B with scope S (containing A, not necessarily
containing B) with body β, and ⊟B,U

A β for the corresponding unnamed threat.
A threat in programming may occur if programmer A threatens customer/user B to stop working on

program X (which B expects to be developed by A and for B about halfway next year.

1.6 More secondary promises in relation to computer programming
For completeness, but without relevance for the rest of the paper we list some more promises of relevance
for programming. Scope is left implicit. We qualify these promises as secondary because each of these plays
a role in processes meant to arrive at a stage in which both primary promises, that is the program checkout
promise and the program checkin promise, have been made.

1. B promises A that offers for work on a project for implementing requirements specification Sreq are
welcome, and that such offers will be considered in detail

2. A promises B to turn Sreq into a technical specification Stech.

3. B promises A payment if a program X is developed so that X sat Stech.

4. A promises B to develop a program X so that X sat Stech (that is an implementation of Stech),

5. A promises B to act quickly on bug reports by delivering a patch (that is a modification X ′ of X
provided by A), or a mechanism available to B for it it to modify X into X ′.

6. B promises A (by way of bug report number k) that (with a run of X) on a particular input p1 the
output q1 = X(p1) was observed which lies outside the technical specification Sspec, i.e. ¬S(p1, q1)
(and for that reason X is expected to fail on test case p1 when tried out by A).

7. B promises A that no damage has been incurred (by B or a client of B) which is being considered by
B as having been caused by the failure mentioned to B in bug report k.

8. B promises A (by way of bug report no. k+ l) that on input p2 the result q2 = X(p2) of X lies outside
the specification S, that is ¬Sspec(p2, q2). Moreover B notifies A that a causal connection between
this failure of X with damage that has recently occurred is investigated.

9. B promises A (with reference to bug report no. k+l) that, as was stated already, X failed on input p2 as
¬Sspec(p2, X(q2)) and moreover, B confirms that a causal connection with damage D is considered
plausible at this stage.

6

10. A promises B to investigate bug report number k + l without delay and to report on the findings
including providing answers to the following questions:

(i) Is the bug recognised (that is can it be repeated on the development platform used by A), if not, is
Rreq based on invalid assumptions about the platform on which B is using X?

(ii) Is the bug caused by a fault, if so, which mistake (made by whom) has caused the fault, if not has
a software process flaw occurred?

(iii) Why was the bug not detected when the program delivery promise was made,

1.7 The role of trust
The dynamics of promising is best understood under the assumption that the agents involved maintain, and
regularly update, levels of trust with respect to other agents. We understand trust as follows:

Definition 1.1. Trust of agent A in agent B is a willingness of A to accept vulnerability (following [1])
with respect to B, where this willingness is grounded in two beliefs: (i) A’s adoption of some rule which
governs the behaviour of B, plus (ii) A’s expectation that B will operate in compliance with said rule (for
both beliefs in the context of trust see [19]).

Assuming that B (i) B is willing to accept vulnerability arising from failure of X , and (ii) B has strong
belief in A’s discipline and competence of program production (that is programming), and (iii) B believes
that A will work at the usual quality level on this occasion, then, upon becoming aware of A’s program
checkout promise concerning program X , then B may become confident that X will work well for B (that
is B will expect X to function in a satisfactory manner), and subsequently B may issue a complementary
program checkin promise (for X) without hesitation or delay. Upon having made a checkin promise it is
plausible that B makes use of X . Successful use will increase B’s expectation that X is satisfactory, as well
as B’s belief (i) (as in Definition 1.1), thereby increasing B’s trust in A as a programmer.

If no program is delivered by A, or the delivered program X does not work properly (according to B),
B’s expectation that X is satisfactory will decrease and B’s trust in A may be negatively affected. In the
latter case it will depend on the circumstances which of both beliefs (as in Definition 1.1) will be most
affected.

2 Accusations
We will use the approach to accusations of [11]. The format is that, with accusation p, (accuser) A, accuses
(accusee) B (with scope S) of β (body of the accusation). Accusations are similar constructs to promises
but with quite different meanings. The following modal notations may be used: ⊠B,S

A β for an unnamed
accusation and p⊠B,S

A β for a named accusation, but we will make limited use of these notations below.
We notice that accusation theory has no bias in favour or against either the accuser or the accusee or in

connection with any agent in scope. It seems to us that accusations occur in in practice in certain patterns
and that a fairly limited collection of patterns describes a majority of the cases. In order to get a grip on the
plurality of patterns we start with surveys of five aspects: (i) why are accusations made, (ii) what kinds of
issue (subject of the body of the accusation) can be distinguished, (iii) which assessments of the strength of
the accusable can be mentioned, (iv) to what extent is the accusation personal, and (v) which reactions to
accusations can be distinguished.

7

2.1 Procusations as counterparts to accusations
For reasons of symmetry we introduce procusations as a sign of support to a procussee, the opposite to an
accusation. Both accusations and procusations may be considered speech acts in which a judgement is issued
about the behaviour of an other agent, and this is done with zero or more other agents in scope. An accuser
asserts a negative attitude towards some feature (past, present or future) of the accusee, while a procuser
asserts a positive attitude with respect to a feature of the procusee. If a restaurant receives a negative review
which details the negative reviewer experience, such a review may be understood as an accusation, and
conversely, if the review is positive such may be understood as a procusation. Procusations are promises as
understood in promise theory, though with the additional restriction that a procusation will not suggest any
future action by a procuser. For instance: B (customer, user) procuses to A (programmer) that program X
has passed the acceptances tests and is ready for deployment by B. Below we will use promise also in cases
where procusation might be preferable in order to keep the vocabulary as simple as possible. As notations
for procusations we propose: ⊡B,S

A β for an unnamed procusation and p⊡B,S
A β for a named procusation.

2.2 Why are accusations made
Given accusation p: A (accuser) accuses B (accusee) of β (body, that is content of p) with scope S (collection
of agents at least including A). The general question may be posed: why might this happen? The idea is not
so much to provide an exhaustive answer of this question but to uncover patterns with high frequency.

1. A feels that agents in S should know about B’s involvement in β, and A packages this information in
an accusation; this motive may or may not be combined with one or more of the following motives:

(i) A intends and expects to achieve that A will be punished for its share in β,

(ii) A intends to harm the status/position of B (including: A (primarily) acts out of revenge towards
B, and: A takes pleasure in the resulting complications),

(iii) A hopes to reduce the influence of B, in a certain context that A shares with B, (for instance by
reducing the trust that agents in S have in B, or by forcing B into a defensive position),

(iv) A expects to gain recognition and visibility among agents in S (and perhaps beyond S),

2. A holds that B must change habits, and by issuing the accusation p expects to contribute to that change
coming about),

3. A expects some form of compensation to be awarded to agent C (maybe C = A) who A considers to
be “ victim of p”, (either directly from B, assuming B is in S, or indirectly, that is from other agents
in S),

4. A has in mind that agents in S come to know that the behaviour of B is considered “accusable”, and,
optionally, one or more of the following:

(i) A indicates to agents in S to take notice of the fate of B upon having been accused in the manner
of p,

(ii) A indicates to agents in S to take notice of the fate of B upon having been involved in β,

(iii) B is not alive anymore and cannot be an agent in S for that reason, nevertheless agents in S
must take notice of the assessment of β and grasp that having been supportive of B may still have
consequences.

5. other motives (for A).

8

2.3 What kind of wrongdoing is β according to the accuser?
An exhaustive listing is impossible but some forms of wrongdoing (in the eyes of the accuser) may be
distinguished:

1. problematic personal behaviour (including: supposedly siding with the wrong side in a conflict, in-
tentionally causing harm or damage; helping one or more agents with performing objectionable be-
haviour),

2. problematic unprofessional behaviour, (including: sloppy work or negligence; acting against codes of
conduct of one’s profession, not necessarily in a consequential way; poor quality work),

3. problematic inaction (including the following: having been inactive in a situation where one or more
agents C,C1, C2, .. were damaged while B could have been effectively helpful to them; not speaking
out or otherwise intervening in a non-violent manner upon having become aware that an agent, say D
runs the risk of being treated badly; not taking action in order to prevent certain risks from coming
into existence or being mitigated),

4. other accusables.

2.4 Measuring the strength of accusations
We propose 5 levels of force of an accusation. These levels are independent of the validity of the accusation:

1. controversial,

2. marginal,

3. moderate,

4. significant,

5. serious.

2.5 What reactions to an accusation may be distinguished
Suppose A accuses B of β with scope S

• B considers the accusation valid and B promises to A (B’s intention) to engage in a constructive
debate on “what next?”,

• B considers the accusation justified, while being as yet unconvinced of the validity of β, and B
promises to A (B’s intention) to engage in a constructive debate on

- what next in terms of fact finding on β, and,

- how to arrive at a joint assessment of β, and

- what to do after the facts have been found, and agreement of an assessment has been achieved.

• B denies the accusation (that is B considers p both justified and invalid) and B promises to provide
A with a motivated denial of (its involvement in) β,

9

• B considers the accusation unjustified and B retaliates, by means of one or more of the following:

- B issues a counter accusation towards A, (perhaps with a different scope, perhaps with A not in
scope),

- B issues a threat of some kind towards A,

- B plans to damage A and does so, or,

- B asks agents in S to support B in harming A.

• other forms of reaction to an accusation.

2.6 Levels of abstraction and transformation of accusations
Given accusation p: A accuses B of β with scope S, then two important aspects of β are: compression
and emphasis. Compression (degree of being comprimed) is about the level of detail of the description of
β while emphasis has to do with the way in which components of β are being highlighted, possibly at the
expense of other components of it. Given p one may imagine:

to comprime p : making β more detailed and extensive (alternatively to make p more abstract, to make it
less concrete, to shorten p, to unrefine p, to make p more compact, and to compactify p),

to uncomprime p : making p more detailed (to refine p, to make p less abstract),

to emphasize p : with respect to an intended profile: β is understood as being a combination of components
which according to a profiling policy have differential importance and for components of higher im-
portance a presentation with more emphasis is chosen while for components with a lower importance
a presentation with less emphasis may be chosen.

to de-emphasize p : with respect to an intended profile: β is understood as being a combination of compo-
nents which according to a profiling policy have differential importance and for components of higher
importance a presentation with less emphasis is chosen while for components with a lower importance
a presentation with more emphasis may be chosen.

For instance take β (with B accusing A, however) as follows:

program X has been delivered by A (programmer) to B (user) while there were more than
250 faults present in X , including 3 faults (as detailed in report R that C (consultant) has
recently written on request of A) which together have recently caused substantial damage (as
documented in d). Moreover A has not responded to bug reports from staff member b of B who
indicated failures which were caused by one of the faults mentioned in R.

A may be unimpressed because (i) A holds that a presence of only 250 faults in the first release of X
would in fact be a greats success (for A), and (ii) B’s methods of fault localisation do not spot one of the 3
mentioned faults as causes of the failures which staff members of B have been reporting since its delivery to
and deployment by B. Other faults were recently found (in search of causes for the allegedly neglected user
bug reports, which are not causes of substantial damage as reported in d according to B.

Now β can be made more compact (for instance by C who is reporting on p for certain news outlets) as
follows:

10

program X has been delivered by A (programmer) to B (user) while there were many faults
present in X , including faults which have recently caused substantial damage. Moreover A has
not responded to bug reports from staff of B.

And upon emphasising C may obtain:

programmer A has sold B buggy programs that caused much damage. Staff of B has responded
poorly to complaints from B.

It is plausible that B is unhappy with the compactified form of p and even more unhappy with the emphasised
form of the latter version of p.

3 Accusation theory as complementary to promise theory
Although accusation theory is mean to be able to stand on its own feet, without relying on promise theory,
it is helpful to focus on the potential complementarity between both accounts. Following the ideas of Mark
Burgess promise theory does away with the conventional side effect of a promise that it creates an obligation
for the promiser, and thereby promises are turned into a tool for an underlying normative theory of voluntary
cooperation. Similarly accusations can be set free from an assumption that by making an accusation the
accuser acquires an obligation to demonstrate the validity of what we call the body of the accusation (using
the corresponding terminology of promise theory). Now accusations can be understood as a tool for an
underlying (equally normative?) theory of voluntary non-cooperation. Voluntary non-cooperation may be
understood as a mechanism which is helpful for an agent to find out with whom to cooperate, which matters
in turn because cooperation becomes more effective if it occurs in a clustered fashion.

Besides accusation there are several other mechanisms of voluntary non-cooperation. Simply lack of
interest or lack of sympathy may incentivise voluntary non-cooperation without any accusation coming into
play. The above suggestion amounts to no more than that accusation is one of the instruments of voluntary
non-cooperation, where we notice that in a context where accusations are made in a very public manner these
effects may be quite strong. For instance a high profile accusation may work well to change the loyalties of
voters in advance of elections

3.1 The OS movement as an instance of voluntary non-cooperation
Voluntary non-cooperation plays a significant role in computer software. For instance the open source (OS)
movement accuses companies of keeping software secret so that problems cannot be spotted and improve-
ments cannot be proposed let alone implemented by competent members of the public. The mechanism of
OS software implements voluntary non-cooperation with agents who entertain certain business models. A
paradigmatic accusation (pattern) arises: A (proponent of OS) accuses (p), B (programmer) of selling C
(user) a program X which (i) has been derived from OS program Y (with reference to Y) and either (ii)
without making due reference to Y and without declaring that X has an OS status as well, or otherwise (iii)
while making X closed source and imposing corresponding restrictions on the use by C of inSq X . OS uses
copyright law to realise a context where accusations of the kind mentioned can not only be upheld in court
but may also damage the reputation of B so much as to constitute an incentive for C (or any other potential
user of X) not to cooperate with B in this manner.

11

3.2 The anti-testing movement as an instance of voluntary non-cooperation
It seems fair to say that within computer science there has been an attitude among some researchers to view
a focus on program testing as a sign of bad taste. The underlying accusation would be that: those who focus
on testing do not even try to contribute to the construction of correct programs, while “of course” that is
what they should do. Instead opponents of testing advocate the use of formal verification, or even better
programming in such a manner that faults cannot be introduced in the first place.

Much has been written about this methodological issue and several authors have defended intermediate
positions. Nevertheless it seems to be the case that this kind of accusation has promoted voluntary non-
cooperation of many theorists with the very large group of practitioners who held (and still hold) that testing
is a necessity. An intriguing consequence of that situation that theorists engage in negative qualifications
of the practical value of testing without providing (or making reference to) a proper definition of testing to
begin with (for instance see [21]).

Conversely in the software engineering community opponents of formal verification have voiced the
accusation that it is too expensive, if it can be done at all, so striving for formal specification and formal
verification of programs would be a waste of precious energy and time. In a specific situation the accusation
can be like: A (manager) accuses B (programmer trying to make use of formal methods) of “you are wasting
our time and money”. In this form the accusation can be quite influential, whether or not the body (you are
wasting our time and money) is valid. On the basis of such fairly general, and sometimes more specific,
accusations many programmers have been led to voluntary non-cooperation with proponents of the formal
methods community often without having much awareness of what can and what cannot be done with such
methods.

Rather new is the following accusation: A (academic manager or industrial research manager) accuses
B (“old style” researcher in computer programming) of “working on outdated topics by not being visible
in quantum computing”. This situation is not at all hypothetical, several instances of this phenomenon are
know to the authors.

3.3 A difference in style between PT and AT
Promise theory was conceived by Mark Burgess with the idea in mind that artificial agents (such as machines
and programs) might just as well issue promises as human agents may do, but are less plausibly subject to
obligations. This origin has led to promise theory having a bias towards promises made by and about
artificial agents, as e.g. in [6]. For accusation theory it is, for the time being at least, more plausible to
view accusations as involving human accusers and accusees, as well as agents in scope. We expect that
this asymmetry is a temporary matter, and that at some stage artificial agents will be involved in issuing
accusations. Perhaps that already takes place in some cases with automated production and distribution of
messages on social media.

3.4 Accusations supposed not to create obligations for validation revisited
Suppose A accuses (with accusation p) B of β with scope S. And suppose that this situation is dealt with in
court.

(i) If A is the prosecutor and B is the defendant then it is expected that A makes a best effort to show the
validity of β. A is under no obligation to succeed for the simple reason that the court is to some extent free
in its assessment as to whether or not A has succeeded in validating β.

12

(ii) If the fact that p has been issued by A is the case in court, so that, say C accuses A of having issued
accusation p against B (and by doing so has committed a punishable wrongdoing), then it may very well be
the case that:

(a) the court agrees with C in a case where β is valid (while the publicity given to that fact by A was
wrong), or

(b) that the court disagrees with C while it holds β invalid because the court is unimpressed by the claim
that A should not make an accusation of this kind, or

(c) that the court agrees with C while it holds β invalid because the court agrees that A should not
produce an accusation of this kind without providing convincing arguments for β at the same time,

(d) that the court disagrees with C because after all it turns out that β is valid, while at the moment of
producing accusation p that fact could not have been known to A (so that A apparently made the accusation
by way of a gamble, not knowing whether or not validation of β would be required in the future an to what
extent such validation would be possible).

In each of the above cases (a),..,(d) the postulate that an obligation to validate β has been created by A’s
issuing of p is not a decisive factor. A being obliged to “have the intention to demonstrate the validity of β”
seems to play no role either as intentions are hard to assess for a court.

3.5 Promises about accusations
In the following situation A,B,C,D are supposed to be participants of an organisation, D has a manage-
ment responsibility, A has procedural responsibility, while C and B are colleagues who are supposed to
cooperate smoothly. The organisation maintains a classification of issues and γ is one of the categories in
this classification.

The following pattern involves person C who accuses person B within an organization managed by D.
In the organisation person A has a procedural responsibility for dealing with problems among participants.

Here is an example of a situation involving two accusations a1, an accusation issued by C towards B,
and a2 a repeat of essentially the same accusation though now within a formal context where agent A has
become responsible for handling the accusation as a problem within the organisation.

Promises are used for communication about and announcements of accusations. In this example promise
p1 serves as a warning by C that an accusation will be made, and with p2 the B points out to C that they
expect management (that is D) to become involved. Promise p3 is an announcement to C that A will
deal with the accusation in a systematic manner, most likely in accordance with internal guidelines of the
organization. Promise p4 contains the message to B that A will deal with the problem (of the promise
having been made). Finally with a2, C repeats their accusation against B, now within the context of the of
the formal procedure as set up by A.

1. p1: C promises B that “C will accuse B of an issue of category γ”,

2. p2: B promises C that “B will require that the issue, whatever it is, is first discussed with D”,

3. a1: C accuses B with scope {A,C} of “an issue Y (with B) of category γ”,

4. p3: A promises C with scope {A,C,D} that

(i) A will refer to the accusation as case n, and

(ii) upon having received more information about Y , A will deal with the matter in detail, and

(iii) A will communicate the existence of case-n to B,

13

5. p4: A promises B with scope {A,B,C,D} the following:

(i) C has accused B with scope S′ of Y where Y is of category γ and is yet to be explained (to A) in
more detail, and

(ii) A will take the initiative to deal with the matter in detail upon having received said explanation,
and

(iii) A expects B to await further steps in this matter by A, and

(iv) A will refer to the matter as case-n, involving accusation an, with body Y = β(an) = βn”.

6. a2: C accuses B with scope {B,C} of:

(i) an issue Y of category γ (repeating accusation a1, while making reference to case n), and

(ii) the explanation that in particular Y amounts to βn,

An instance of this case arises if C is a designer of some type of artifact who is in need of a program
written by B and C accuses B of not taking the time tor turn B’s requirements into a technical specification
(with sloppy work as a consequence). This brief exchange of promises and accusations indicates various
elementary facts:

• case descriptions in which accusations occur are likely to involve promises as well, and in fact the
issuing of even a single significant accusation may be embedded in a plurality of related accusations,

• it is not uncommon for an accusee not to be in the scope of an accusation, (in such cases the accusation
is called indirect). In the example B is not in the scope of accusation a1.

• accusations my be anonymous as well (assuming that all agents involved are able to communicate in
an anonymous manner) for instance:

aanon1 : C anonymously accuses B that “someone experienced (with B) an issue Y of category γ”,
(this anonymous accusation might occur as an alternative to a1 in the mentioned pattern),

A non-anonymous accusation is alternatively referred to as a signed accusation.

Anonymity and indirectness are independent properties of an accusation. We assume that an accusation is
by default non-anonymous and is by default direct, so that anonymity and indirectness ought to be mentioned
when informative,

3.6 Intentional ambiguity of the term accusation
The concept/term accusation features intentional ambiguity. One may understand of accusation as (i) an
event of accusing that took place in space and time), or (ii) as one of a plurality of possible abstractions of
said event, or (iii) as an abstract entity’ which may not be traced back to a specific event of coming into
existence.

Labeling this ambiguity as intended implies that if more resolution is needed such must be made explicit.
For an intentionally ambiguous notion one is not looking for a more specific default meaning, under the as-
sumption that in many cases the ambiguity can be resolved by taking the context of occurrence into account.
For instance “p as issued on (place, time, circumstances)”. Purely abstract use is for example as follows: “p
will serve as a description of the accusation at hand, the history of p is not precisely known unfortunately
but what we know is this:”. Or if the committee is confronted with an accusation p of category γ the
committee will proceed in three steps as follows...”.

14

With concept/term we denote the idea of a concept being understood as referred to by a term together
with the term being used for naming the concept. In many cases there is still a question about the meaning
of the concept/term.

Our reason for pairing concept and term is to emphasise that when, for instance, asking for the meaning
of animal/bat (and not baseball accessory/bat) one need not first go into excessive detail about the meaning
of animal, but one can make use of the fact that the focus will be on animals which are plausibly labelled as
bats. In accusation theory we have coupled the informal concept of an accusation with the term accusation.
Now of course the informal idea of an accusation can exist without the term “accusation” (or a synonym of
it) having been incorporated in the language. We have been looking for an equilibrium given the existence
of the term accusation as well as its various connotations. We are not claiming that there is a unique concept
of accusation which, as if by accident, we denote with accusation.

Another example is the term (in fact phrase) “natural numbers”. When asked to explain “natural num-
bers” it is helpful to begin with stating that term will be understood as somehow denoting a class of numbers
understood as entities in logic and/or in mathematics. Having arrived at that point one may on the one hand
start looking for definitions which logicians and mathematicians have been giving to the term “natural num-
bers”, and on the other hand looking for concepts for which “natural numbers” might be the most appropriate
name. Finally one may or may not wish to choose one’s favoured interpretation, or one may prefer to leave
some (perhaps unambiguously specified) intentional ambiguity in place.

4 Options for accusables in the context of programs
We assume that A (programmer, seller of program X) and B (user, buyer of X) are agents who represent
their respective organisations and who may have other agents and teams working for them. The program
X may in fact consist of a plurality of programs. We will use the listing of accusables in 2.3 above as the
primary organisation mechanism.

Regarding personal behaviour there is the familiar complaint that A would not be able or willing to
discuss with B the problems which B is worried about:

B accuses A of being unable or unwilling to discuss in non-technical language one or more
problems which B has reported.

Accusations concerning a problematic professional action and inaction can be combined under the assump-
tion that throughout these accusations inaction is an instance of problematic action (that is acting too late).
Now a classification with respect to the phase in the software lifecycle can be used. First we list accusations
in both direction in connection with requirements and specifications.

Contracting phase:
B may accuse A of: overestimating its own capabilities and uniqueness:

• having made the impression of having ample experience with projects of this type (while that
was not at all the case),

• having insufficiently qualified staff for the project to implement S,

• having too few qualified staff members for the project to implement S, (other problems: illness,
overworked etc.),

• asking too much money for the development of X ,

• charging excessive cost/hr during a significant part of the planned project,

15

A may accuse B of: underestimating the challenge involved:

• of offering not enough money to perform job (developing, validating, and implementing Sspec),

• setting an unreasonable deadline (too much time pressure),

• not being willing to pay for the best staff which A has on offer,

• expecting from A an excessive degree of outsourcing the work to low paid workforce in other
organisations.

Requirements capture and specification phase:

1. A accuses B of having provided a problematic requirements description Rreq, more specifically
A accuses B of:

• not providing informative replies to their questions q1, . . . , qn,
• not having used a systematic and known process for requirements capture so that A finds it

hard to grasp the completeness of the result,
• not having grasped the importance (and cost) of prototyping for parts of the requirements

capture process,
• having changed the interpretation of certain fragments in Rreq with respect to the interpre-

tation which was assumed in previous stages of the process,
• implicitly demanding that A produces advice concerning requirements capture without mak-

ing that demand explicit and without providing adequate compensation for it,
• Not allowing A (by way of limited project funding) to achieve a formal specification of the

behaviour of the program to be produced,
• Requiring that A will design X as the implementation of an algorithm P (that supposedly is

compliant with Rreq) and which B has transferred to A in the form of a flock of algorhymes
(see [8] for this notion); (now A may accuse B of) having provided a faulty algorithm
(see [8]).

2. In connection with formal verification: B accuses A of one or more of the following dysfunc-
tional uses/misuses/non-uses of formal methods:

• having missed a relevant and cost-effective opportunity for formal specification/verification,
• having used (for the purpose of verification) a formal specification which does not match

with the intended specification Sspec (deviation being relevant for B, however),
• having written informal proofs of significant properties of the specification without making

the effort to formalise the proof and to have the proof machine checked (which is the state
of the art in such cases),

• having spent too much time and money on (failed) attempts to apply formal methods,

3. B accuses A of having provided a flawed specification (that is a specification involving any
problem that may potentially or will necessarily result in failing implementations) as a proposed
solution of the requirements Rreq as provided by B, more specifically:

• having provided an unrealisable specification (in which case the specification is inconsistent,
or stated otherwise the specification has (suffers from) a consistency flaw),

• having provided a specification which is too weak and which for that reason admits imple-
mentations which do not comply with the given requirements (in which case the specifica-
tion has an underspecification flaw),

16

• having provided a specification which is plainly wrong by admitting failing implementations
only, with respect to Rreq , in which case the specification features a misspecification flaw,

• having provided a flawed specification which in fact contains one or more faults (known to
B), that is a limited number of fragments with proposed local changes thereof in the (text of)
Sspec, the application of which can bring about an adequate or less inadequate specification
S′
spec, so that these fragments may be considered to cause a flaw.

Accusations in connection with product quality:

1. B accuses A of having provided B with a program X with a quality problem. More specifically
B accuses A of one or more of the following deficiencies:

• having shipped X which was flawed at the time of delivery (that is non-compliance with
requirements; counterexample known to B),

• of having provided a failing program X . (Here failure is non-compliance with specification
Sreq; a witness/primary test case of which X fails is known to B),

• having provided a buggy program X; in return A may accuse B of
– complaining about buggyness without being specific about the nature of these bugs: are

these failures or faults.
– complaining about buggyness (in particular the occurrence of failures) without provid-

ing proper test cases for documentation of these,
• B accuses A of having produced a faulty program X (that is a program that contains one

or more faults (known to A); a witness/primary test case is known to B with evidence that
A knew about it); in return A may accuse B of gratuitous complaints about buggyness, for
example:

– accusing A of delivering a faulty program while in fact the statistics that have resulted
from the testing phase, as well as the statistics which are obtained regarding the initial
phase of use are quite good given the type of program X ,

– having accused A of delivering a faulty program X without being aware of a scientifi-
cally well-understood definition of a program fault, and of the occurrence (in a program)
of a plurality of program faults,

• having produced a program (X) which is: lacking structure, lacking modularisation, lacking
proper documentation, and which for that reason is poorly accessible to maintenance; in
return A may accuse B of:

– not having mentioned these issues in the original requirements specification (plausibly
to be listed under the heading nonfunctional); in return B may accuse A of: one or more
of the following:

* evading their own professional responsibilities,

* not asking B for consent on critical issues where such interaction would have been
expected (by B) as a feature of the normal business process,

* not having improved on matters of style and appearance in spite of this issue having
popped up in a recent past with work done by A for another client of A (who happens
to be known to B),

– having outdated notions of structure and maintenance in mind,
– not having given any prior feedback on these matters during the development process

although there would have been ample opportunity for doing so,

17

2. B accuses A of one or more of the following problems with style and appearance of X:

• unfortunate choice made of the program notation used for X ,
• unfortunate choice made for a development environment for the project to implement S

(that is leading to X), (in particular some plausible tools were unavailable, or not available
at the needed level of quality or maturity, so that the development technology has not been
state of the art),

• having carried out a program (X) (development) process which is: lacking historical docu-
mentation and data, had insufficient software support, lacking proper documentation, poorly
accessible to maintenance,

• not having chosen a well-defined software process model (so that problems with R might
have unnecessarily gone unnoticed),

3. Intellectual Property Rights (IPR) related accusations regarding the quality of X in terms of IPR
and ethics (responsible programming):

• C accuses A of having used (copyright infringement, including misuse of open source code)
an IPR protected program (with IPR/copyright belonging to C) in the construction of X ,

• B accuses A of it having become vulnerable to third party IPR based claims because of
copyright and/or patent infringement(s) in connection to X which become vulnerabilities
relevant for B upon adoption and use of X by B,

• C accuses A of having used (patent infringement) an IPR protected algorhyme (see [8])
(with IPR/software patent/algorithm patent belonging to C) in the construction of X ,

• B accuses A of having delivered X including a moral defect (see [8] for that notion).

Accusations in connection with process quality:

1. B accuses A of poor technology choice, in particular one or more of the following :

• making a mistaken choice for the program notation for X ,
• making a mistaken choice for a development environment for the project to implement S

(that is leading to X), (in particular some plausible tools were unavailable, or not available
at the needed level of quality or maturity, so that the development technology has not been
state of the art),

• having performed program (X) (development) process which is: lacking historical docu-
mentation and data, had insufficient software support, lacking proper documentation, poorly
accessible to maintenance,

• B accuses A of not having taken IPR matters seriously, with the effect that the legal status
of X is may be at risk,

• B accuses A of not having sought IPR protection (in an appropriate form) for X as delivered
to B while knowing that B aspires that such protection will be available,

2. B accuses A of negligence of explicit software process modelling and compliance policing:

• not having chosen a well-defined software process model (so that problems with R might
have unnecessarily gone unnoticed),

• having chosen a definite software process model, say SPMRreq
but having failed to en-

force compliance of the actual development process for X with SPMRreq
so that a software

process flaw (see [10] for the notion of a software process flaw) has occurred during the
development of program X . More specifically B accuses A of:

18

• B accuses A that their software process management failed to prevent (deliberately?) the
occurrence of a software process flaw during the development of X (resulting in a flawed
but not faulty program X).

3. B accuses A of inadequate testing and verification, in particular one or more of the following
“accusables”:

• having conducted inadequate pre-release testing (verification) of program X , more specifi-
cally:

– not having taken the time to develop an expected user profile (on which to base black
box testing),

– not having tested each instruction (no full line coverage) and not having tested each
branch (no full branch coverage),

– not having taken the time to perform fuzzing in search of security vulnerabilities,
– having missed the opportunity to perform metamorphic testing on a significant scale

while the specification suggests ample opportunity for such forms of testing,
– not having considered the possibilities for performing Risk Based Testing (RBT),
– having conducted poor performance testing,

• not having made an estimate of the number of dormant failures in X at the time of first
release, (see [7] for the notion of a dormant failure),

• not having made an estimate of the number of dormant faults at the moment of first release,
In return A may call into question the very notion of a dormant fault: with this accusation:

– A accuses B of “accusing A of shipping X with a significant number of dormant faults”
while B is not even aware of a convincing definition of the notion of a dormant fault,

– A accuses B of making up ad hoc acceptance criteria which ought to have been covered
and documented in the requirements capturing phase,

• not having performed formal verification in cases where that would have been plausible and
possible,

• not providing insight in protocols and data regarding pre-release testing of program X ,
• having disregarded warnings by their own staff members regarding potential (post-release)

failures of X ,

4. B accuses A of poor post delivery service:

• not responding to a specified collection of B’s bug reports,
• responding too late to a specified collection of B’s bug reports,
• not having improved X in order to deal with a specified collection of B’s bug reports,
• having released program X while a number of last minute bug reports had not yet been

handled and fixed; and not being clear about that state of affairs when releasing bug fixes
seemingly unrelated to B’s bug reports emerging from actual usage,

5. A accuses B of having underperformed as a commissioning party (that is client for a custom
made program), in particular A accuses B of one or more of the following accusables:

• having provided unrealisable requirements Rreq ,
• having failed to provide useful answers when clarification of Rreq was needed,
• having failed to keep in touch with the development process, while being aware that they

would be insisting on choices which were not made explicit beforehand,

19

• expecting that A takes IPR risks in order to reduce the cost of the project,
• having asked A to develop an implementation of Rreq wile doing so unavoidably leads to a

program with a moral flaw (see [8]),

Security related:

• Security related accusations: B accuses A of:
– having (consciously?) delivered a program (X) which when installed on B’s platform cre-

ates a significant (and unnecessary) security risk,
– not having taken standard precautions it safeguard B (when using X) against security prob-

lems for instance:

* not having provided in time a security patch after a (new and thus far unknown) security
flaw in underlying system software has been announced world wide, (example: Log4J2)

* by not facilitating the installation of an upgrade/patch of underlying systems as soon as
these are distributed by the respective engineering teams,

* by including open source software in such a manner that following the maintenance
path of that software is impeded,

– not having responded in time to B’s question whether or not a recently discovered security
flaws for system software entails a risk for users of X ,

• B accuses A of having disclosed (security relevant) confidential information about its activities
(for example contents of Rreq , or subsequent communication between A and B) to some other
agent C.

4.1 Assuming a hypothetical program statistics background
We may assume that in recent years say starting y−k until last year y0 a number of ak programs were
delivered, with a length distribution as follows l(k,m1.m2)% of the ak programs (say Y) delivered in year
k have m1 ≤ LLOC(Y) ≤ m2. We assume that a program is produced with a certain quality level
in {low,moderate,medium, high, critical}. We do not distinguish between the statistics of different
manufactures. Now assume that quality level high has to be achieved and let nhigh(k) be the number of
such programs delivered by A with intended quality level high.

We assume that independent of the LLOC of the latter programs the number of failures and underlying
faults spotted and repaired per instruction (in the first year of its deployment) were fairly constant, say 2 per
10, 000 instructions. Suppose that LLOC(X) = 250, 000 then some 50 failures with corresponding faults
were found and changed in the first year of use of X . It then follows that the accusation 1 (bullet 4) of
“accusations in connection with product quality” above is irrelevant without quantitative information about
the number of faults.

Proposition 4.1. An accusation to the program manufacturer A about the existence of faults in program
X (using the name as an identifier which points to the most recent version of X as delivered by A) MUST
involve quantitative information on the number of faults and must refer to plausible bounds for such numbers
which supposedly have been exceeded.

It follows from the above Proposition that the notion of a Laski fault is unlikely to be useful (for issuing
accusations about program quality) and that one must think in terms of numbers of MFJ faults (see [20] a
first paper proposing a precise definition of the number of faults in a program), or in terms of numbers of
RTJoC faults (which is not a defined notion in [4] where RTJoC faults were introduced, though a similar
definition as for MFJ-faults makes sense).

20

5 On the relevance of accusation talk for programs
Suppose one holds that program X must be delivered by A in such a manner that compliance with Sreq

is formally demonstrated and the formal proof has been checked by computer. Now there is no room for
accusations about failures of X and faults in X , or about the way in which testing has been performed.
Some conceivable accusations which were mentioned above may indeed disappear once better production
technologies are adopted. Not all accusations can be expected to disappear in that manner. Nevertheless we
will look for arguments which motivate the use of accusation talk.

Let Y be an artefact in class arteFact (example of artefact class, just as X is an artefact in class pro-
gram). We assume that there are various characteristics χ on artefacts of class arteFact and we assume that
degree(χ, Y) ∈ {good, ok,marginal, notok, bad} measures the degree to which an artefact Y complies
with given expectations of its compliance with characteristic χ. The engineering challenge comes about
to design and construct Y so that it meets certain requirements R and say degree(χ, Y) = ok. Computer
programming (taking program for arteFact) abounds with such challenges, with χ ≡ χcorrrect stating of a
program that it is correct as a prime example. In practice one often considers χ ≡ χreasonably−fault−free

and then computer science has deplorably little to say about the technical meaning of this characteristic.
Nevertheless much can be said without thinking in terms of accusations. Given Y a user of Y may

come to think that in fact degree(χ, Y) = notok for some important characteristic χ of arteFact’s. The
assertion “degree(χ, Y) = notok” may be understood as an anonymous complaint about Y without ad-
dressee. It follows that by contemplating such assertions, understood as negative assessments, some notion
of a complaint comes about without any need to introduce agents by whom or to whom a complaint is is-
sued. Most of software engineering theory is configured in that manner: no mention is made of the various
agents who are complaining and who are arriving at judgements of the form degree(χ, Y) = d for some
d ∈ {good, ok,marginal, notok, bad}. Our task is twofold: (i) arguing that it is useful to think of a com-
plaint as being issued by an agent and being received by another agent, perhaps with some agents in scope,
and (ii) to argue that in addition to complaints there is ample room for accusations, and (iii) to argue that in
the context of programming accusations have a role to play.

5.1 Complaints and bare complaints
Definition 5.1. A bare complaint (with respect to an artefact Y of class arteFact) is an assertion of the form
“degree(χ, Y) = d” with d ̸= good.

Definition 5.2. A complaint (with respect to an artefact Y of class arteFact) is a bare complaint β (the body
of the complaint) together with:

(i) an agent (say C) who is complaining (complainant, complaining party),
(ii) an agent (say E) who is a party to whom the complaint is directed (target of the complaint),
(iii) a collection S of agents in scope (who are made aware of the complaint).

It may be the case that one or more accusations are contained in the body of a complaint. For instance:

A complains to U (an external body) that “A accuses B1 of β1 (A,U in scope)” AND “A
accuses B2 of β2 (A,U in scope)” AND degree(χ, Y) = notok”, with A,U in scope of the
complaint.

The advantage of thinking in terms of complaints is immediate in circumstances where judgements of the
form degree(χ, Y) = notok are highly subjective. By thinking in terms of a complaint several agents
are introduced the judgement of whom will be taken into account. In computer programming the assertion

21

“program X is reasonably free of faults” is highly subjective. Such judgements can only be understood in
the context of a specific tradition of the production and use of certain classes of programs. Thus while the
science of computer programming is written and conducted in terms of bare complaints and how these are
to be avoided), in the practice of computer programming there is no escape from the introduction of agents
who play a role in arriving at notoriously subjective assessments.

The list of possible accusations in the context of programming qualifies at the same time as a list of pos-
sible complaints. The principled conclusion which we draw from the list is that it is obvious that subjective
judgement has a large role to play in programming, so that thinking in terms of complaints and not merely
in terms of bare complaints is plausible and warranted.

5.2 From complaints to accusations
We consider once the situation that programmer A has produced program X and that user B comes to
complain that X suffers from failure f , which is caused by fault Ff . Now it is obvious that only A is to be
blamed for making the mistake of having an instance of fault Ft in X which causes that failure f can (and
by definition of failure sometimes will) take place when running X (that is on some inputs, not necessarily
on all inputs). We write X features−failure f for the assertion that X shows failure f . Computer science
offers may ways to denote that fact.

Now consider the logic of agency as developed for example in [23] and [17] with the key modal operator
E− EA ϕ denotes that A brings about that ϕ holds. If A is the programmer of X then it is reasonable to
assume that EA (X features−failure f). In particular if fault Ff causes (X features−failure f) it
may be claimed that A made a mistake by writing program X in such a manner that (simply) repairing
fault Ff (by replacing its footprint with the corresponding change, that is fixing the fault) would improve
the behaviour (when running) of X . The literature on computer programming seems to be unanimous in
attributing the origin of faults and consequential failures to the mode of operation of programmers. The
underlying assumption is that: programmer mistakes lead to programs which contain faults that are causes
of failures. Fixing a fault can be understood as a form of backtracking from the side of the programmer.

The user enters the picture in a different manner. More often than not specifications are somewhat vague
and incomplete. However the specification is expected to be clear about “what matters”. Now it is up to the
user to determine “what matters”, and in this manner the very determination of failures becomes linked to
the user. Only failures which are (or might) ever taking place during use “really matter”. We find the both
programmer and user as well as their respective judgements enter the picture. Programmers must find out
by themselves what it is that matters in a specification. Programmers also must entertain a view on what
it means that (X features−failure f), and importantly, which forms of failures f must be taken into
account.

5.3 Acceptance testing versus formal verification
Remarkably in a context where the assertion that X is a correct implementation of Sspec can be formally
shown and where it can be taken for granted somehow that an implementation of Sspec will also be an
adequate implementation of Rreq the promise “A promises B that the development of program X has been
finished and that X will be usable (by B) as an implementation of requirements Rreq” can be decomposed
as: (i) A has developed X and has formally proven that X implements specification Sspec AND (ii) B holds
that implementations of Sspec will meet the requirements Rreq.

It turns out that, at least in principle, the use of formal methods allows a complete separation of concerns
between programmer A and user B so that no primitive relation involving both agents is needed, in particular

22

not a relation that describes either promises, or complaints, or accusations, each of which involve two agents.
However, in practice it is very often the case that a programmer knows for whom (that is for what kind

of use) a program is written and in such cases acceptance testing is done with an expected user profile in
mind, moreover B’s taking a new program on board takes place on the basis of (i) the confidence that Rreq

adequately captures what B needs, (ii) the confidence that A has acquired (primarily via testing) that X
implements Sspec as well as Rreq, (ii) the trust that B has in developer A, and (iii) the expectation of both
A and B that bugs found by B will be adequately communicated to A speedily resolved by A.

5.4 The case for contemplating accusations on programs
We believe that the relevance of the promise relation in the context of computer programming, say A
promises B that program X will serve B’s plans, has been argued for convincingly.

Now computer programming is to a high degree a matter of trial and error, and therefore availing of
flexible ways of dealing with adverse circumstances. Thinking in terms of accusations provides a flexible
language for such matters.

6 Third party judgement of accusations
Whenever an accusation p with body β is made agents in scope may wish to assess the situation. Various
discussions in such a context directly discuss whether or not the accusations are false. Accusation Theory in
the sense of [11] starts from the assumption that it is necessary to first reflect on the status of an accusation.
In that sense one first has to ask whether or not it is justified to make an accusation at all before one can
investigate whether or not an accusation is valid or not. To say ‘an accusation is justified’ says nothing about
the falsity or validity of an accusation but only states that it is in some sense reasonable that an accusation
is made. If that is not the case, the question of validity did not even occur. In that sense we will distinguish
the following judgements about an accusation p:

• p is justified: it is in some sense reasonable that the accusation is made (a precise description of
justified accusations is given in Definition 6.2 below.

• p is not justified: it is not considered reasonable that the accusation is made,

• p is valid: β is validated, that is the content of the accusation holds true,

• p is invalid (that is not valid): β is refuted: that is the accusation is (considered to be) false,

• p is evidence immune: there is no systematic method to determine the validity or invalidity of p.

6.1 Evidence immune accusations
An accusation p with body β is unprovable if the validity of β cannot be established by any reasonable
methods of proof. An accusation is irrefutable if the validity of β can not be refuted by any reasonable
methods of proof.

The situation can be more complex: an accusation may be unprovable because either the proof that is
found is too weak, or because a method of proof that often works “in such cases” does not apply in this
particular case. Similarly with the accusation being irrefutable.

More importantly an accusation can be both categorically unprovable and categorically irrefutable: in
such case it is very implausible that a proof can be found in either direction.

23

Definition 6.1. An accusation p is evidence immune if β is both categorically unprovable and categorically
irrefutable.

We have not found thus far a plausible case of an evidence immune accusation in the context of computer
programming.

6.2 Justification of accusations
Assume that (with accusation p) A accuses B of β with scope S. Now let Chandling ∈ S be an agent who is
supposed to be formally handling the accusation. It is plausible that the accuser has definite expectations on
how the accusation will be received by their friends in scope, as well as by their non-friends. It may at the
same time be unclear to the accuser how Chandling will deal with the matter.

When is an accusation justified? In promise theory it is assumed that whether or not a promise is kept is
a matter of assessment by individual agents, and that there is no universally valid notion of a promise having
been kept. Similarly

Definition 6.2. (Justified accusation) Assume that (with accusation p) A accuses B of β with scope S and
C ∈ S. Now accusation p is justified according to C if (i) C considers β to express content that merits being
the subject of an accusation from A to B, and moreover (ii) one of the following criteria is met:

(a) either C considers β to be factually adequate, or otherwise
(b1) C considers it plausible to such an extent that β is factually adequate that C considers the accusa-

tion to constitute a reasonable instrument (from the perspective of A) for obtaining clarity on precisely that
matter, or otherwise:

(b2) C considers it plausible that (although A doubts that β is valid, or even if A knows that it is not)
from the perspective of A it is plausible to such an extent that β is factually adequate that C considers the
accusation p to constitute a reasonable instrument (from the perspective of A) for obtaining clarity (for A)
on precisely that matter, or otherwise:

(c) C considers the virtue of the accusation in its capacity of a warning sign (to agents in S, but conceiv-
ing of β merely as a relevant pattern not necessarily related to A or to B, see “warning signal rationale”)
sufficiently high in order to hold that the accusation can be maintained even when factual adequacy of β is
likely to be unwarranted or is unlikely to be properly investigated, or otherwise

(d) C knows that β is both categorically unprovable and categorically irrefutable, but C has so much
more trust in A than in B that C considers it justified that A accuses B by way of an evidence immune
accusation.

(e) A contemplates a neutral complaint about B concerning β. However, by issuing an accusation A
consciously risks some increased vulnerability (A expects to be held to account), more so then will be the
case with a complaint (so A expects); in such circumstances A deems an accusation to be less aggressive
than a corresponding complaint would be.

With case (e) it is not meant that in general issuing an accusation would be less aggressive than making
a corresponding complaint, only that in some cases that might be the case which then might be considered
to constitute a justification of the accusation at hand.

6.3 Validation of accusations
Validation of an accustation with body β is a matter of validation of β. In many cases justification of an
accusation precedes validation. In court an accusation is justified by the very fact that it is put forward

24

in court. The proceedings in court have the objective to arrive at either validation or invalidation of the
accusations that have been made.

In computer programming user B may be unhappy with a program X written by programmer A and then
(accusation p) accuse A of having written a buggy program. Such an accusation is justified by the very fact
that B is unhappy about the functionality of X when put in use. However, a subsequent attempt to validate
accusation p may lead to the conclusion that B has provided A with a requirements specification which, in
hindsight, has proven defective, it fails to capture the intentions of B.

6.4 Controversial instances of justification of an accusation
Of these grounds for accepting a justification for accusation p the criterion (ii) − c may be controversial,
and the same holds for criterion (d).

6.4.1 Doubts on justification in terms of the general interest.

If C communicates a positive judgement of an accusation (which can be done for example by means of a
promise to the accuser or to the accusee with the other agents in scope), and if justification (ii)−c is applied
by C then B may be inclined to accuse C of misusing the accusation issued by A.

This situation has many different forms:
(i) C may not mention factuality of β and disregard the need (for instance by being satisfied an uncon-

vincing judgement by Chandling of the matter) for significant further investigation to such an extent that B
is bound to assume that ground (ii)− c has played a major role for C,

(ii) C may promise to be convinced of the justification of p on ground (b1) or (b2) while in fact being
motivated to express their support for A on the basis of a consideration of the form (ii)− c.

6.4.2 Doubts on justification on the basis of loyalty.

Justification of an accusation along ground (d) may also be controversial but in fact there is a group of
philosophers (who are communicating via the PEASOUP newsletter) who advocate precisely this mech-
anism. They suggest that justification ground (d) may be admissible under the constraint that those who
accept the accusation by judging it justified must engage only in limited actions (perhaps retaliation) against
B. B may only be deprived of “goodies” to which B is not entitled.

In the setting of programs one may imagine that the complaint is about a program X that B has bought
from A being buggy (according to A). Now C is the scope of the accusation may choose not to acquire an
instance of X from B. Recommander systems (public reviews etc.) support this mechanism.

Justification by C of p on the basis of (d) comes (for C) with an awareness of victimhood of B. Victim-
hood may or may not originate spontaneously from an accusation.

Definition 6.3. (Trivial victimhood.) Assume that (with accusation p) A accuses B of β with S in scope.
Now with this accusation comes (by definition) with a promise of victimhood: A promises to be victim of B
on the basis of p.

Definition 6.4. (Reciprocal victimhood.) Assume that (with promise p) A accuses B of β with S in scope.
Now with this accusation comes (by definition) a possibility for a promise of victimhood for B: A promises
to be victim of A on the basis of the claim that p is an unwarranted accusation.

25

CLAIM: the promise of reciprocal victimhood does not automatically come into existence (unlike the
promise of trivial victimhood). The need for B to issue a promise of reciprocal victimhood is often under-
estimated. Only if the promise of reciprocal victimhood is made by B is it plausible that B would complain
about C judging positively about p on the basis of grounds as in (ii)− c of Definition 6.2.

6.5 A case involving two accusations and two promises
Below we discuss an accusation pattern where an accusation leads to a promise issued by an agent in scope,
then a second, similar, accusation leads to a similar (though less detailed) promise by the same agent in
scope. Now the accusee of the second accusation may be unhappy, when assuming that the grounds for
making the second promise where roughly the same as the grounds issuing the first promise.

Assume conditions (1),..,(6):
(1) (with accusation a0) A0 accuses B0 of β0 with C in scope S0,
(2) assume further that (with promise p0) C promises A0 of having observed and concluded that:
- A0 made accusation a0,
- (according to C) the grounds as mentioned in (ii)− c (of Definition 6.2) suffice for a justification of

accusation p0 in view of the number of persons who suffer similar victimhood as expressed by β0,
- that the above consideration (involving (ii)− c of 6.2) matters irrespective of the actual state of affairs
in the case of accusation p0,
(3) moreover, (with accusation a1) A1 accuses B1 of β1 with C in scope S1,
(4) β0 and β1 are similar in terms of what the accusation is about,
(5) and (with promise p1) C promises A1 of having made accusation β1 with scope S,
(6) now using abduction B1 concludes that C had in mind grounds (ii)− c of 6.2 when issuing promise
p1 (while B1 strongly disagrees with these grounds).

Under these assumptions it is plausible that B1 is dissatisfied about C and contemplates further moves, such
as a formal accusation in court based on the viewpoint that the reputation of B1 has been damaged by C.

6.5.1 Refinement of the case to a case about programs

This case has an interpretation in terms of computer programs as follows, where we assume that B = B0 =
B1. B has produced and sold a program X to a large group of users. With accusation a0, A0 accuses B of
having shipped X while still containing too many failures in part F0 of the functionality of F . C is a user
of X who is quite dissatisfied with X , so much so that C is happy about the accusation made by A0 and
she says so, by means of a promise which suggests that many users are dissatisfied with X while paying no
attention to the validity of the particular accusable β0 as provided by A0 in p0. Then with accusation p1, a
second user A1 of X , accuses B of having shipped X while still containing too many faults in a part F1 of
the functionality of X . Again C pronounces support for the accuser, this time A1, by way of an accusation,
now without any further comment.

Now B may disagree with A1 and may be quite certain that the functionality F2 is not defective (no
failures observed), and B may hold against C that C has procused accusation p1 while not having confirmed
the validity of β(p1) so that the reputation of B has been damaged by A1.

6.5.2 Refinement of the case to a case about alleged problematic behaviour

The case has also an interpretation with B0 ̸= B1. Now assume that β(p0) is a complaint about a certain
type of personal misbehaviour, and that β(p1) is quite similar, though the persons involved are different.

26

C has issued a promise in support of A0 with grounds (ii) − c in view of the fact that such misbehaviour
occurs frequently and that accusation p0 serves the public interest by raising awareness of such problems.
Accusation p1 comes later and involves different people. Now for B1 the promise q1 is very unpleasant
and B1 guesses (an act of abduction) that C has based their verdict of the matter (as procused) on the same
reasoning as in q0 thereby exposing B1 to reputational damage without paying much attention to the validity
of β(p1).

6.6 Validation of an accusation
Validation of an accusation is a matter of subjective assessment by individual agents just as much as justifi-
cation of an accusation.

Definition 6.5. (Valid accusation) Assume that (with accusation p) A accuses B of β with scope S and
C ∈ S. Now accusation p is valid according to C if (i) C considers accusation p to be justified, and
moreover (ii) one of the following criteria is met:

(a) C considers β to be factually adequate on the basis of their own information, or otherwise
(b) C considers β to be factually adequate on the basis of information available to a trusted third party,

as well as the opinion about that as promised (with C in scope) by said third party.

Validation and justification for accusations are not identical and are not disjoint. Justification is about
the “accusation as such”, while validation is about its content. These notions coincide in the eyes of an agent
who is not interested in the factual quality of β (which is quite often the case). This terminology leaves room
for much confusion, which is intentional. in practice accusations do often lead to confusion and in order to
make sense of such forms of confusion it is unhelpful to design a terminology which would by itself prevent
that confusion arises.

This idea is comparable to the notion of program correctness. The very notion of program correctness
makes sense only in a world where incorrect programs can be constructed. If means of construction for
programs by definition assume the presence of a specification and guarantee by technical means compliance
of an implementation with a specification then the very notion of program correctness becomes futile.

Definition 6.6. Agent C considers a complaint containing an accusation p dismissed if C considers p
unjustified.

A complaint is rejected if it has not been dismissed while it has been rejected.

Definition 6.7. Agent C considers an accusation p rejected if (i) C considers p justified, and (ii) C considers
p to be invalid.

Agent C may first come to believe that p is justified and only later develop the belief that p is not valid.

6.7 The buggy program accusation
The simplest and perhaps also most frequent accusation about a program is as follows:

Buggy checkout accusation: (Customer/user) B accuses (programmer) A (with scope U) of checking out
(and handing over to B) a program X supposedly implementing Sreq but unfortubnately quite buggy.

In symbolic notation this accusation look thus: p⊠A,U
B [X buggy−impl−of Sreq]. The question arises

as to when the accusation may be considered justified, say by agent E ∈ U , and when it may be considered
valid. We may discuss this as if the matter takes place in practice.

27

1. Computer science does not offer a definition of buggyness, and therefore an objective reading of the
accusation is implausible. An epistemic reading is most plausible: according to what B knows about
Sreq in particular and program manufacturing in general it is the case that: X buggy−impl−of Sreq.
Other observers (for example agents in U) may arrive at different judgements.

B may have heard from some C ∈ U that A often delivers buggy programs and B may use “induction”
to guess that X is buggy as well. E may consider this argument adequate for justification of p.

In return A may accuse B of not making up their own mind on the quality of X and merely listening
to gossip instead: ⊠B,U

A [B merely listens to gossip].

2. B may have found during its use until the moment of issuing accusation p, a series of cases of input
data, say d1in, . . . , d

k
in such that ¬Sreq(d

i
in, X(diin)). B considers k to be large given the limited time

it took to collect these. C may consider the finding of k bugs a justification for the accusation.

Now A may perhaps react with a counter accusation:
⊠B,U

A [B exaggerates : a single fault causes all listed failures]

3. B may have done more work and may have spotted k failures as in item 2 and may have identified
as many MFJ-faults (including proposed changes, see [4] for MFJ-faults) each causing (and upon
performing the change) solving one of these failures. C may see justification of accusation p one the
basis of such concrete information.

Now A may perhaps react with a counter accusation:
⊠B,U

A [B exaggerates : k faults is ok given the number of instructions of X]. If this hy-
pothesis can be confirmed accusation p is not valid.

4. B may have experienced failures of X so often that the use of X had to be put to an end, at least
temporarily. C may agree that if X cannot be used in practice because of bugs it is buggy. B sticks to
the accusation which is likely to lead to further investigation of X with the conceivable outcome that
a small number of MFJ-faults can be held responsible for the failures that hamper use. In the latter
case the accusation is not valid after all, although it was justified.

A may react by accusing B of excessive extrapolation of the failures in X which B has found.

5. B may have experienced failures of X which were easy to handle. Nevertheless B has withdrawn X
for the moment in order to investigate the quality of X , from which C may agree that if X cannot be
used in practice because of bugs, it must be buggy.

A may react by accusing B of not taking the standard maintenance cycle seriously. The normal
workflow would have solved the problem that came out of these bugs quite speedily.

6. B may be right in warning other agents (in U) against the use of X , even if the B has not yet spotted
many bugs. Nevertheless the bugs which B has found may be of such nature that issuing a warning
(by way of accusation p) is justified to such an extent that the accusation is considered valid by C.

A may accuse B of damaging the good name of A without convincing grounds.

7. Validation of p requires that B demonstrates that given the difficulty of Sreq and given LLOC(X), that
is the logical lines of code (that is the number of instructions of X), having found k faults in (say m
months) is relatively high. This demonstration must be based on a survey of literature with relevant
statistics of programming.

28

6.8 Requirements specification versus technical specification
An important promise in practice is the technical specification checkout promise (as mentioned above):

(promise) p: (programmer) A promises customer/user B that Stech constitutes an adequate
design for an implementation of Sreq.

The idea of A is that a program X which implements Stech will also implement Sreq. In other words:

∀programX.[X sat Stech =⇒ X sat Sreq]

If real time control of an embedded system is the functionality to which X is supposed to contribute then
nomical necessity is the best A can hope for while metaphysical necessity is out of the question and is not
intended to be achieved. What S promises involves:

2nomical∀programX.[X sat Stech =⇒ X sat Sreq]

In practice A will use its own models and methods for system analysis in order to verify the nomical va-
lidity of the implication that a program which implements Stech will also implement Sreq so that epistemic
necessity of nomical necessity will be claimed:

2A2nomical∀programX.[X sat Stech =⇒ X sat Sreq]

Here 2Pϕ expresses that according to what P knows ϕ must be the case. For chaining of such modalities
we refer to [24] where these matters are studied in detail. Further A’s claim is likely to depend on defeasible
methods for asserting X sat Stech (in spite of the fact that the latter assertion is in principle a purely
mathematical matter). Let 2>t

A ϕ denote that A is sure that ϕ with a degree of certainty above t ∈ [0, 1]
and let 3>r

B ϕ denote that B may convince themselves that ϕ is the case with certainty above r. Now A’s
technical specification checkout promise can be read as meaning that for some appropriate t and r (both
known to A) it is the case that:

(2>t
A [X sat Stech] & 2A2nomical∀programX.[X sat Stech =⇒ X sat Sre]) =⇒ 2A3

>r
B [X sat Sreq]

When performing the technical design of real time embedded software the logical complexity of a seemingly
simple specification checkout promise is remarkable. An optimal final state of the programming project is
as follows: an inSq X has become available such that:

2B2nomical[X sat Sreq]

The optimal is unachievable and A and B must settle for, say:

2>s
B 2nomical[X sat Sreq]

for some well-chosen s ∈ [0, 1]. In these circumstances it is still possible that B finds input data din for
X on which X fails to perform in conformance with Sreq . If that happens B may accuse A of delivering
inadequate work etc.

29

7 On the use of unjustified accusations
Assuming that whether or not an accusation made by A is justified primarily resides in the arguments that
A maintains we find the following definition of an unjustified accusation (where the various negations have
been inserted in capitals).

Definition 7.1. (Unjustified accusation.) Assume that (with accusation p) A accuses B of β with scope S,
and C ∈ S. Now accusation p is UNJUSTIFIED according to C if (i) C considers β NOT to express content
that merits being the subject of an accusation from A to B, or otherwise (ii) EACH of the following criteria
is met:

(a) C considers β to be factually Inadequate, AND
(b1) C considers it NOT plausible to such an extent that β is factually adequate that C WOULD consider

the accusation to constitute a reasonable instrument (from the perspective of A) for obtaining clarity on
precisely that matter, AND:

(b2) C considers it NOT plausible that from the perspective of A it is plausible to such an extent that β
is factually adequate that C WOULD consider the accusation p to constitute a reasonable instrument (from
the perspective of A) for obtaining clarity (for A) on precisely that matter, AND

(c) C considers the virtue of the accusation in its capacity of a warning sign (to agents in S, but conceiv-
ing of β merely as a relevant pattern not necessarily related to A or to B, see “warning signal rationale”)
TOO LOW for C to hold that the accusation can be maintained even when factual adequacy of β is likely to
be unwarranted or is unlikely to be properly investigated, AND

(d) WHILE C knows that β is both categorically unprovable and categorically irrefutable, it is NOT the
case that C has so much more trust in A than in B that C considers it justified that A accuses B by way of
an evidence immune accusation.

Using C as an arbiter of justification of accusations may be unreliable: if A motivates their accusation p
against B along (ii)− c with the argument that B is an enemy and that virtually any problem that is caused
for B by A’s accusation p constitutes an intended outcome of the accusation then C may go along with such
considerations out of loyalty with A. It may even be the case that A has threatened C in order to go along
with A’s accusation of B.

7.1 Self-propelling accusations
An accusation (p in which A accuses B of β with scope S, and C ∈ S) may be unjustified according to the
assessment of agent C but the verry existence of p may at the same time have three different side-effects:

(1) to produce an appeal to C to develop a degree of loyalty to A which creates room for justification (of
p by C) on grounds (ii)− c (with the understanding that loyalty to A turns the support of A in to a laudable
act),

(2) and at the same time to develop a degree of trust in A and distrust in B which contributes to justifi-
cation along the line of ground (d).

(3) S issues promises of their justification of p to other agents inside or outside scope S of p, with the
result of a snowballing effect, so that increasingly more agents become involved by becoming aware of the
existence of accusation p and by developing their own justification of p.

An accusation which generates its own support may be called self-propelling. Self propelling accusations
are among the most powerful (and dangerous) speech acts available to a human agent.

30

7.2 Malicious accusations
Agent C may consider an accusation malicious.

Definition 7.2. Agent C considers accusation p with accuser A, accusee B, accusable β, and scope S
malicious if: (i) C considers p unjustified and (ii) C holds that the intention of A has been to create a
self-propelling accusation.

Computer programming does not provide obvious examples of unjustified accusations, self-propelling
accusations or malicious accusations. There is much room for malicious promises, however, for instance in
the context of phishing attacks.

8 Concluding remarks
The background of the absence of a side-effect in terms of the creation of obligations form promising lies in
the initial analysis of Mark Burgess that inanimate agents can be autonomous and can engage in voluntary
cooperation, while obligation is less plausible for an inanimate agent (see for example [15]). In a symmetric
manner one may hold that accusations can play a complementary role as instruments for voluntary non-
cooperation. However, in the context of computer programming we understand promising and accusation
as means of communication of information in circumstances where it is non-obvious or even impossible to
obtain reliable information regarding underlying facts.

We have introduced modal logic style notations for promise, threat, accusation and procusation. We
consider this notation to be helpful for exposition, while we have no claim or expectation concerning the
existence of useful, necessary, or sufficient axioms for promises and accusations.

An outline is given of accusations that may occur in the setting of computer programming. A simple
conclusion can be draw: expecting a programmer A to provide a customer/user X with a program X in
such a manner that no complaints or accusations are likely to come about requires formidable preparation
by both A and B, as the space of possible accusations is enormous. Our account still underestimates the
intrinsic conceptual difficulty of software engineering in the following sense: the assumption that a pro-
gramming project starts with B providing a requirements specification Sreq is often too optimistic. Instead
prototype versions of X may be used as the best available expression of Sreq, in which case it becomes
almost impossible to organise an effective separation of concerns for A and B.

We have not embedded our discussion of promising and accusation in the interaction of programmer
versus user/owner of programs in an institutional context. We hold that it is a characteristic of computer
programming that third party assessments of the state of affairs are often hard to obtain. If the programmer
role is played by a team fielded by a reputable international cooperation, of which there are many in computer
programming, then it may be impossible to find a third party whom the task can be assigned to come to a
reliable assessment of a problem situation. An unfinished program is unlike an unfinished building. Much
more than in civil engineering the members of a programming team have in mind what must be done, and
transfer of the project to another team may even be more costly than restarting a project, or even redefining
the objectives of a project. We hold that these considerations justify our focus on a few key roles regarding
computer programming.

31

References
[1] Annette Baier. Trust and antitrust. Ethics, 96 (2), pp 231–260, (1986).

[2] David A. Baldwin. Thinking about threats. The Journal of Conflict Resolution, 15 (1), 71–78, (1971).

[3] Jan A. Bergstra. Promises and Threats by Asymmetric Nuclear-Weapon States. χt Axis Press. ISBN:
978167318215, (2019).

[4] Jan A. Bergstra. Instruction sequence faults with formal change justification. Scientific Annals of
Computer Science, 30 (2), pp. 105–166, (2020).

[5] Jan A. Bergstra. Promise theory as a tool for informaticians. Transmathematica, https://doi.
org/10.36285/tm.35 (2020).

[6] Jan A. Bergstra. Promises in the context of humanoid robot morality. International Journal of
Robotic Engineering , DOI: 10.35840/2631-5106/4126, https://vibgyorpublishers.org/
content/ijre/ijre-5-026.pdf, (2020).

[7] Jan A. Bergstra. Qualifications of instruction sequence failures, faults and defects: dormant, effective,
detected, temporary, and permanent. Scientific Annals of Computer Science 31 (1), pp. 1–50, (2021).

[8] Jan A. Bergstra. Defects and faults in algorithms, programs and instruction sequences. Transmathe-
matica, https://doi.org/10.36285/tm.49 (2022).

[9] Jan Bergstra and Mark Burgess. Promise Theory: Principles and Applications. χt Axis Press. ISBN:
9781495437779, 2014; Second edition ISBN: 9781696578554, (2019).

[10] Jan Bergstra and Mark Burgess. Candidate software process flaws for the Boeing 737 Max MCAS al-
gorithm and a risk for a proposed upgrade. https://arxiv.org/abs/2001.05690v1 [cs.CY]
(2020).

[11] Jan Bergstra and Marcus Düwell. Accusation theory. Transmathematica, https://doi.org/10.
36285/tm.61, (2021).

[12] J.A. Bergstra, J.A. and M.E. Loots. Program algebra for sequential code. Journal of Logic and Alge-
braic Programming, 51 (2), pp. 125–156 (2002).

[13] J.A. Bergstra and C.A. Middelburg. Thread algebra for strategic interleaving. Formal Aspects of
Computing, 19 (4), pp. 445–474, (2007).

[14] Bergstra, J.A., Ponse, A.: Execution architectures for program algebra. Journal of Applied Logic, 5 (1),
pp. 170–192, (2004).

[15] Mark Burgess: An approach to understanding policy based on autonomy and voluntary cooperation.
In: IFIP/IEEE 16th DSOM, LNCS 3775, pp. 97–108, (2005).

[16] Mark Burgess: Knowledge management and promises. LNCS 5637, pp. 95–107, (2009).

[17] Dag Elgesem: The modal logic of agency. Nordic Journal of Philosophical Logic, 2 (2), pp. 1–46,
(1997).

32

https://doi.org/10.36285/tm.35
https://doi.org/10.36285/tm.35
https://vibgyorpublishers.org/content/ijre/ijre-5-026.pdf
https://vibgyorpublishers.org/content/ijre/ijre-5-026.pdf
https://doi.org/10.36285/tm.49
https://arxiv.org/abs/2001.05690v1
https://doi.org/10.36285/tm.61
https://doi.org/10.36285/tm.61

[18] Gelperin, D., Hetzel, B.: The growth of software testing. Communications of the ACM, 31(6), 687-695,
(1988).

[19] Andrew, J.I. Jones. : On the concept of trust. Decision support systems, 33 pp. 225–232, (2002).

[20] Besma Khaireddine, Ali Mili: Quantifying faultiness: what does it mean to have N faults? In: 2021
IEEE/ACM 9th International Conference on Formal Methods in Software Engineering, pp. 68–74,
(2021).

[21] McIver, A., Morgan, C.: Correctness by construction for probabilistic programs. In: T. Margaria and
B. Steffen (Eds.): ISoLA 2020, LNCS 12476, pp. 216–239, 2020. https://doi.org/10.1007/
978-3-030-61362-4_12, (2020).

[22] Miller, R., Collins, C. T.: Acceptance testing. Proc. XPUniverse, p. 238. (2001).

[23] Pörn, I.: Some basic concepts of action. In: S. Stenlund (ed.), Logical Theory and Semantic Analysis.
Reidel, Dordrecht, (1974).

[24] Williamson, T.: Modal science. Canadian Journal of Philosophy, 46 (4-5), pp.453-492, (2016).

33

https://doi.org/10.1007/978-3-030-61362-4_12
https://doi.org/10.1007/978-3-030-61362-4_12

	Introduction
	For informatics: promise of fact is prior to fact
	Promises in connection with programs
	Primary promises: program checkout and program checkin
	Secondary promises for programming: requirements specification and technical specification

	Promise: an unnecessarily complicated modality?
	Promise versus obligation
	Threats as counterparts to promises
	More secondary promises in relation to computer programming
	The role of trust

	Accusations
	Procusations as counterparts to accusations
	Why are accusations made
	What kind of wrongdoing is according to the accuser?
	Measuring the strength of accusations
	What reactions to an accusation may be distinguished
	Levels of abstraction and transformation of accusations

	Accusation theory as complementary to promise theory
	The OS movement as an instance of voluntary non-cooperation
	The anti-testing movement as an instance of voluntary non-cooperation
	A difference in style between PT and AT
	Accusations supposed not to create obligations for validation revisited
	Promises about accusations
	Intentional ambiguity of the term accusation

	Options for accusables in the context of programs
	 Assuming a hypothetical program statistics background

	On the relevance of accusation talk for programs
	Complaints and bare complaints
	From complaints to accusations
	Acceptance testing versus formal verification
	The case for contemplating accusations on programs

	Third party judgement of accusations
	Evidence immune accusations
	Justification of accusations
	Validation of accusations
	Controversial instances of justification of an accusation
	Doubts on justification in terms of the general interest.
	Doubts on justification on the basis of loyalty.

	A case involving two accusations and two promises
	Refinement of the case to a case about programs
	Refinement of the case to a case about alleged problematic behaviour

	Validation of an accusation
	The buggy program accusation
	Requirements specification versus technical specification

	On the use of unjustified accusations
	Self-propelling accusations
	Malicious accusations

	Concluding remarks
	References

