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Abstract
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itly. We now explicitly construct two such universal worlds. A continuous
universal world constructs possible worlds with transreal co-ordinates di-
rectly. A discrete world provides a binary hypercyclic vector which can be
used to create transfloating-point co-ordinates that approximate transreal
co-ordinates. We also discuss the philosophical implications of universal
worlds for an omniscient observer and human science.

c© T.S. dos Reis, J.A.D.W. Anderson,
W. Gomide 2023

Licence CC BY-SA 4.0

https://transmathematica.org
https://transmathematica.org/index.php/journal/Paper_55
https://transmathematica.org/index.php/journal/Paper_55
http://sites.ifrj.edu.br/tiago-reis
mailto:tiago.reis@ifrj.edu.br
https://portal.ifrj.edu.br
https://portal.ifrj.edu.br
https://en.wikipedia.org/wiki/James_A._D._W._Anderson
mailto:james.a.d.w.anderson@btinternet.com
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4700610Y2
mailto:waltergomide@yahoo.com
https://www.ufmt.br/campus/araguaia/pagina/institutos/90
https://www.ufmt.br/
http://creativecommons.org/licenses/by-sa/4.0/


Introduction

In [8] we proposed a mathematical model for a total semantics and a logical
space. For total semantics we understand a logical system which contains the
classical values of truth and falsehood; a value of contradiction, inspired by
paraconsistent logics; values which correspond to degrees of truth and degrees
of falsehood, inspired by fuzzy logics; and a gap value which corresponds to
the indeterminacy, that is, a value which does not contain information about
the truth or falsehood of a sentence. Furthermore, this system has the logical
connectives of negation, disjunction and conjunction acting appropriately in the
values just cited; that is, having the expected action on the classical, dialetheaic,
fuzzy, and gap values. The idea of logical space, in turn, is inspired by Wittgen-
stein’s conception that the world’s logical form is given by a “configuration of
objects.” Thus, just as physical objects are arranged in a physical space, objects
which logically make up the world are situated in a “logical space” [7]. We have
established logical space as a well-defined mathematical structure like a vec-
tor space, with the possible worlds being transvectors and the communication
between them being transvector transformations.

We chose the set of transreal numbers to translate the set of semantic values.
We defined the set of semantic values as RT . We defined the space of the
sequences of transreal numbers, (RT )N, as the set of all possible worlds and
used the topological and transvectorial structure of this space to model several
logical concepts. A topological space is a set where it makes sense to speak
about neighbourhood, proximity and convergence. This allowed us to give a
mathematical sense to the idea that a possible world is close to another one and
to the idea that a succession of possible worlds converges to a determinate one.
In this way, we were able to give a mathematical definition to the notion of an
accessibility relation, motivated in modal logic, that allows the motion from one
possible world to another. We proved that there is a universal world, that is, a
possible world which can access any other by approximating it.

That proof was not explicit. That is, it proved that infinitely many universal
worlds exist but it did not exhibit such a world explicitly. In the present paper
we give an explicit construction of two, different, universal possible worlds: the
first is a continuous world and the second is a discrete world. This presentation,
though pedagogically useful, does reverse the historical order in which these
constructions were obtained.

Before we begin, let us clarify notation. In Computer Science it is usual to
define that the natural numbers are all of the positive integers and zero, whereas
in Mathematics it is usual to define that the natural numbers are just the positive
integers, excluding zero. Here we follow the mathematical convention and define
that the natural numbers exclude zero and are given by N = {1, 2, 3, . . . }.
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1 Preliminary: Possible Worlds and the
Existence of a Universal World

In order to understand the transreal model of the space of possible worlds, in
this section, we summarise the content of [8].

The method of proof was to establish the space of all possible worlds as a
geometrical space and to establish certain algebraic and topological properties
of that space. Each axis of the geometrical space was labelled with a unique
atomic proposition so that a co-ordinate, on a labelled axis, is the degree to
which the labelled proposition is True, False or Gap. Thus points in this space
are arrangements of semantic values of the atomic propositions. In other words,
points in this space are possible worlds.

The work started by considering what set should be used as semantic values.
We chose the set of transreal numbers.

The set of transreal numbers, RT , [4] [14] is made up of the real numbers,
together with three, definite, non-finite numbers: negative infinity, positive in-
finity, and nullity, RT = R ∪ {−∞,∞,Φ}. In Figure 1 the real numbers are
shown as a continuous line of some finite length in the figure. The axis is scaled
to allow all real numbers to be laid out in the figure. Positive infinity, ∞, lies
to the right of the real-number line, but after a space. This space is a necessary
and essential property of the transreal numbers [3] [13] [12]. Similarly negative
infinity, −∞, lies to the left of the real-number line, after a space. Nullity, Φ,
lies off the real number line. All of the real numbers and both positive and
negative infinity are ordered so that negative infinity is the smallest of these
numbers and positive infinity is the largest of them. Nullity is not ordered, it
is neither small nor large, nor any size in between. Its size is nullity.

Figure 1: Transreal Number Line

The set of transreal numbers is a metric space with the following metric:
d : RT × RT → R,

d(x, y) =

 0, if x = y
2, if x = Φ or y = Φ
|ϕ(x)− ϕ(y)|, otherwise

, (1)
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where ϕ is the homeomorphism ϕ : [−∞,∞]→ [−1, 1],

ϕ(x) =


−1 , if x = −∞
x

1 + |x|
, if x ∈ R

1 , if x =∞
.

With this metric, RT is a Hausdorff, disconnected, separable and compact
space [12].

Each element of RT is called a semantic value. Hence RT is the set of
semantic values. The connective negation is given by

¬ : RT −→ RT

x 7−→ ¬x = −x .

The connective disjunction is given by

∨ : RT × RT −→ RT

(x, y) 7−→ x ∨ y =

{
Φ , if x = Φ or y = Φ
max{x, y} , otherwise

and the connective conjunction is given by

∧ : RT × RT −→ RT

(x, y) 7−→ x ∧ y =

{
Φ , if x = Φ or y = Φ
min{x, y} , otherwise

.

In [8] we generalised the notion of Boolean logic to trans-Boolean logic.
A trans-Boolean algebra is a structure (X,¬,∨,∧,⊥,>), where X is a set,
⊥,> ∈ X, ¬ is a function from X to X, and ∨ and ∧ are functions from
X ×X to X such that the following properties are satisfied: (i) existence of an
identity element, (ii) commutativity, (iii) associativity and (iv) distributivity.
Thus, for all x, y, z ∈ X: (i) x ∨ ⊥= x and x ∧ > = x; (ii) x ∨ y = y ∨ x
and x∧ y = y∧x; (iii) x∨ (y∨ z) = (x∨ y)∨ z and x∧ (y∧ z) = (x∧ y)∧ z;
(iv) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

We proved that the transreal numbers do model classical, fuzzy and a partic-
ular paraconsistent logic by establishing homomorphisms between these logics
and trans-Boolean logic ([8], Theorem 2.5). With the logical connectives defined
above, it follows that: negative infinity models the classical truth value False and
positive infinity models the classical truth value True; the set of real numbers
models dialeathic values that have degrees of both falsehood and truthfulness
[6] [9] [10] [11]: negative values are more False than True, positive values are
more True than False, zero is equally False and True; and Nullity models gap
values that are neither False nor True and which, more generally, have no degree
of falsehood or truthfulness [16] [17]. Thus one can model the semantic values
of many logics.

The next step in [8] was to define a geometrical model for the space of all
possible worlds and an accessibility relation between them. Thus, intuitively,
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a possible world is a binding of a proposition to its semantic values. That is,
at a given possible world, each atomic proposition takes on a semantic value in
RT . We assumed, as usual, that the set of atomic propositions is a countable
set. Hence the set of atomic propositions can be written in the form {Pi; i ∈
N} = {P1, P2, P3, . . . }, where Pi 6= Pj whenever i 6= j. Thus we can interpret
a possible world as a function from {P1, P2, P3, . . . } to RT . But this forms a
sequence of elements from RT . So, denoting the set of the sequences of elements
from RT by (RT )N, we adopted the following definition. Each element of (RT )N

is called a possible world. Hence (RT )N is the set of all possible worlds. In this
way each possible world is a point in the space (RT )N. Given a possible world
w = (wi)i∈N ∈ (RT )N, for each i ∈ N, wi corresponds to the semantic value of
Pi in w.

We proposed a mathematical object that plays the role of an accessibility
relation from a possible world w to a possible world u. The existence of a
continuous linear transformation T on (RT )N, such that T (w) = u is a relation
with the desired characteristics. But to manifest this definition, it was necessary
to define vector operations on (RT )N. Let w, u ∈ (RT )N, where w = (wj)j∈N and
u = (uj)j∈N, and x ∈ RT . We defined w+u := (wj+uj)j∈N and xw := (xwj)j∈N
and denoted (0, 0, 0, . . . ) ∈ (RT )N simply by 0. With these operations, (RT )N is
a transvector space. A non empty set, V , is called a transvector space on RT if
and only if there are two operations + : V × V −→ V and · : RT × V −→ V
(named, respectively, addition and scalar multiplication), such that the following
properties are satisfied: additive commutativity, additive associativity, scalar
multiplicative associativity, additive identity and scalar multiplicative identity.
Which are, respectively, for any w, u, v ∈ V and x, y ∈ RT : (i) w + u = u + w;
(ii) w+ (u+v) = (w+u) + v; (iii) x · (y ·w) = (xy) ·w; (iv) there is o ∈ V such
that o+ w = w and (v) 1 · w = w. The elements of V are called transvectors.
Further x · w is customarily denoted as w · x, xw or wx and o as 0 on RT [8].

We defined a translinear transformation as follows. Let V andW be transvec-
tor spaces on RT . We say that T : V → W is a translinear transformation on
V if and only if for all w, u ∈ V and x ∈ RT : (i) T (w+ u) = T (w) + T (u) and
(ii) T (xw) = xT (w) [8].

Now, given two arbitrary possible worlds w, u ∈ (RT )N, T : (RT )N −→ (RT )N

is called a communication from w to u if and only if T is a continuous, translinear
transformation and satisfies: (i) every constant sequence is a fixed point of T ,
in other words, for each v = (vi)i∈N ∈ (RT )N such that vi = v1 for all i ∈ N,
T (v) = v and (ii) T (w) = u.

Given two arbitrary possible worlds w, u ∈ (RT )N, it is said that wRu if
and only if there is a communication from w to u. We call the relation R an
accessibility relation. In other words, w accesses u or u is accessible from w if
and only if wRu. The accessibility relation is reflexive and transitive. See [8].

Finally, we proved the existence of worlds which approximate any worlds.
The proof used the concept of hypercyclicity [15] from functional analysis. We
extended the topological notion of hypercyclicity so that it holds in the logical
space. When a vector is operated on by a certain kind of operator, it generates
new vectors in a structure called an orbit. The elements from the orbit of a hy-
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percyclic vector lie arbitrarily closely to any element in the space and sequences
of elements can be chosen, from the orbit, so that they converge, arbitrarily
closely, to any element in the space. We used the backward shift operator to
generate an orbit of possible worlds from a single, hypercyclic, possible world.
The backward shift operator shuffles all of its co-ordinate values down one place
so that the first co-ordinate value drops off the beginning of the vector, in a
process that is exactly like running Hilbert’s hotel paradox backwards. Some
sequences of possible worlds then converge arbitrarily closely to any particular
possible world and there are so many sequences that every possible world is
approached in this way. The proof shows that there are infinitely many hy-
percyclic, or universal, worlds and that these are spread with infinite density
throughout the space of possible worlds.

We showed that (RT )N is a metrizable space with the metric D defined as
follows. For each w, u ∈ (RT )N, denote w = (wj)j∈N and u = (uj)j∈N, and let
D : (RT )N × (RT )N → R be given as

D(w, u) = sup
j∈N

{
d(wj , uj)

j

}
, (2)

where d is defined in (1). We showed that (RT )N is a metric, complete, separable
and compact space ([8], Remark 3.7 and Corollary 4.2).

In a metric space we can speak of distance between elements and we can
speak of neighbourhoods, proximity and convergence. We can give an exact
sense to the notion of “being close to.” According to our model of logical space,
possible worlds are points in the metric space (RT )N. This allows us to speak
of proximity and convergence with respect to possible worlds. That is, there is
an exact meaning to “a possible world is close to another” and to “a succession
of possible worlds converges to a particular world.”

Let X be a topological space. A continuous operator, T on X, is said to
be hypercyclic if and only if there is an x ∈ X such that orb(x, T ) is dense in
X. In this case x is called an hypercyclic element of T . Given a set X and a
function f : X −→ X, the iterates of f are defined as f0 = IdX , f

1 = f, f2 =
f ◦ f, f3 = f ◦ f2, . . . ; where IdX the identity function on X. Also, for each
x ∈ X, the orbit of x related to f is defined as orb(x, f) := {x, f(x), f2(x), . . . }.

The fact that orb(x, T ) is dense in X means, in the model of logical space,
that a hypercyclic world generates a sequence of worlds such that every world
is approached, arbitrarily closely, by worlds in that sequence.

Let B : (RT )N −→ (RT )N, B(w1, w2, w3, . . . ) = (w2, w3, w4, . . . ). The
operator B is called a backward shift. We showed that B is an hypercyclic
operator on (RT )N ([8], Theorem 3.13). Being hypercyclic means that there is a
possible world, w, such that, given any possible world u, there is a possible world,
v, which is metrically as close to u as one can want, such that w accesses v. In
other words, w accesses any possible world “by metrical approximation.” That
proof of the existence of universal worlds is indirect, it is not a constructive
proof. That is, the proof stated that there are universal worlds but did not
exhibit such a world explicitly.

6



2 Explicit Construction of a Continuous
Transreal Universal Possible World

Rolewicz has explicitly constructed a hypercyclic vector in certain spaces of
sequences of real numbers [15]. He starts with an arbitrary, dense sequence in
the underlying space. Here we adapt his construction to the space of possible
worlds - which is the space of all sequences of transreal numbers - with the
difference that we start with a specific, explicitly constructed, dense sequence
in our space so that our construction is completely explicit. Thus we show an
explicit construction of a universal world.

2.1 An Outline of the Construction

Saying that a transvector w is hypercyclic, with respect to the backward shift
operator in the space of possible worlds, means that the orbit of w, with respect
to B, denoted as orb(w,B), is dense in (RT )N. Saying that orb(w,B) is dense
in (RT )N means that we find elements from orb(w,B) arbitrarily close to any
element of (RT )N. That is, saying that orb(w,B) is dense in (RT )N means that
given any element u from (RT )N, there exists some element v from orb(w,B)
such that v is arbitrarily close to u. Saying that there exists v arbitrarily close to
u means that given any positive ε, there exists v such that the distance between
v and u is less than ε. That is, saying that there exists v arbitrarily close to u
means for every positive ε there exists v such that D(v, u) < ε.

However, denoting v = (v1, v2, . . . ) and u = (u1, u2, . . . ), we have that

D(v, u) = sup

{
d(v1, u1)

1
,
d(v2, u2)

2
, . . .

}
. Thus, in order that D(v, u) < ε it

suffices that
d(vi, ui)

i
< ε for all i ∈ N. But, the function distance d is bounded

by 2, that is, d(α, β) ≤ 2 for all α, β ∈ RT whence d(vi, ui) ≤ 2 for all i ∈ N.

Hence,
d(vi, ui)

i
< ε for all i sufficiently large. In other words, there is n ∈ N

such that
d(vi, ui)

i
< ε for all i > n. Thus, in order for

d(vi, ui)

i
< ε for every

i ∈ N, we need to be concerned only with the first n co-ordinates of v and u. In
short, in order that D(v, u) < ε, we need only that finitely many co-ordinates
of v are close to the respective co-ordinates of u.

In this way, saying that given any element u from (RT )N, there exists some
element v from orb(w,B) such that v is arbitrarily close to u means that given
u′, a finite sequence of transreal numbers, there exists a finite sequence v′,
which is part of some element from orb(w,B), such that the co-ordinates of v′

are arbitrarily close to the co-ordinates of u′.
Since u′ can be any finite sequence of transreals, we need v′ to be chosen

from a dense set of finite sequences. However, v′ needs to be a finite part of
some element from orb(w,B) and orb(w,B) is a countable set. But Q is a
countable set and Q is dense in R. Thus, we may choose v′ from the set of all
finite sequences of rational numbers and nullity. Denote QΦ := Q∪{Φ}. In this
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way, we need that every finite sequence of elements from QΦ is part of some
element from orb(w,B). However, all elements from orb(w,B) are obtained by
recursive applications of the backward shift operator to the transvector w. That
is, every element from orb(w,B) is the transvector w, except for a finite initial
piece of it. Thus, in order for any finite sequence of elements from QΦ to be part
of some element from orb(w,B), we need that every finite sequence of elements
from QΦ is part of w. Therefore, w must contain, in its formation, all finite
sequences of elements from QΦ.

Eureka! It suffices for w to be the juxtaposition of all finite sequences of
elements from QΦ. So to construct such a hypercyclic transvector explicitly,
we need to explicitly enumerate all finite sequences of rational numbers. After
we have this enumeration, we put its elements side by side. For example, let
us say that 0; −1; (1,Φ); (0,Φ, 1); (−1, 1) are the first five elements of this
enumeration. In this hypothetical example, the first nine elements of w would
be 0,−1, 1,Φ, 0,Φ, 1,−1, 1.

If in 0; −1; (1,Φ); (0,Φ, 1); (−1, 1); . . . all finite sequences of elements
from QΦ appear then any finite sequence of elements from QΦ is a part of w.
Assuming that w has been constructed in the way mentioned above, given an
arbitrary sequence of elements from QΦ with n elements, we are certain that
we can apply the backward shift operator to w a sufficient number of times so
that the first n terms of the result of this recursive application is the sequence
given. That is, given any sequence (v1, . . . , vn) of elements from QΦ, there exists
s ∈ N ∪ {0} such that the first n co-ordinates of Bs(w) are v1, . . . , vn.

Thus when u′, an arbitrary sequence of transreal numbers with n co-ordinates,
is given to us, we will take a sequence, v′, of elements from QΦ with n co-
ordinates so that the k-th co-ordinate of v′ is arbitrarily close to the k-th co-
ordinate of u′ (this is possible because QΦ is dense in RT ). Next we will take
s ∈ N ∪ {0} such that the first n co-ordinates of Bs(w) are the n co-ordinates
of v′.

When an arbitrary element u from (RT )N and an arbitrary positive ε is given
to us, we will choose:

• n ∈ N such that
2

i
< ε for all i greater than n,

• a sequence v′ of elements from QΦ with n co-ordinates such that d(vi, ui) <
ε for all i less than n and

• s ∈ N ∪ {0} such that the first n co-ordinates of Bs(w) are the n co-
ordinates of v′.

Hence we will have D(Bs(w), u) < ε. Since ε is arbitrary among the positive
real numbers, we will have found a Bs(w) arbitrarily close to u. Since u is an
arbitrary element of (RT )N and Bs(w) belongs to orb(w,B), we have it that
orb(w,B) is dense in (RT )N. That is, w is hypercyclic in (RT )N.

Now, let us go back and see how to construct the transvector, w, as men-
tioned above. Let us look at how to make a juxtaposition of all finite sequences
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of elements from QΦ. For this, let us look at how to make an explicit enumera-
tion of all finite sequences of elements from QΦ.

Imagine that we have an enumeration of all elements from QΦ, an enumera-
tion of all pairs of elements from QΦ, an enumeration of all triples of elements
from QΦ, and so on.

QΦ : a11 a12 a13 a14 a15 . . .
Q2

Φ : a21 a22 a23 a24 a25 . . .
Q3

Φ : a31 a32 a33 a34 a35 . . .
Q4

Φ : a41 a42 a43 a44 a45 . . .
...

...
...

...
...

...
. . .

In the table above, for all i ∈ N: a1i is an element from QΦ; a2i is an ordered
pair of elements from QΦ; a3i is an ordered triple of elements from QΦ; and so
on. So we can use a diagonal argument to obtain a unique enumeration of all
finite sequences of elements from QΦ.

Having this enumeration, we simply ignore the finite sequences and look at
each co-ordinate, in the order it appears, as the co-ordinate of a single infinite
transvector.

To conclude our construction we need an enumeration, for each n, of the
set of sequences with n elements. We will start by enumerating the rational
numbers using the Calkin-Wilf tree. After enumerating the rationals, we will
use the same diagonal argument to enumerate Qn

Φ.

2.2 The Construction

Let b : N→ N be defined recursively as

b(1) = 1, b(2k) = b(k) and b(2k + 1) = b(k) + b(k + 1) for all k ∈ N.

Let r : N→ Q+ be defined as

r(i) =
b(i)

b(i+ 1)
for all i ∈ N.
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Notice that r is a bijection. This explicit enumeration of positive rational num-
bers was proposed by Neil Calkin and Herbert Wilf [5].

Let t : Z→ Q be defined as

t(0) = 0, t(i) = r(i) and t(−i) = −r(i) for all i ∈ N.

Notice that t is a bijection.
Let h : N→ Z be defined as

h(1) = 0 and h(i+ 1) = (−1)i
⌊
i+ 1

2

⌋
for all i ∈ N.

Notice that h is a bijection.
Denote QΦ := Q ∪ {Φ}. Let f : N→ QΦ be defined as

f(1) = Φ and f(i+ 1) = t(h(i)) for all i ∈ N.

Notice that f is a bijection.
For each i ∈ N, let ni be the exponent of the number 2 in the prime fac-

torisation of i and denote ni + 1 as p(i) and denote
i

2ni
+ 1

2
as q(i), that is,

p(i) = ni + 1 and q(i) =
i

2ni
+ 1

2
. Let g : N→ N× N be defined as

g(i) = (p(i), q(i)) for all i ∈ N.

Notice that g is a bijection.
Let f1 : N→ QΦ be defined as

f1 = f ;

let f2 : N→ Q2
Φ be defined as

f2 = (f ◦ p, f ◦ q);

and, for each k ∈ N \ {1, 2}, let fk : N→ Qk
Φ be defined as

fk = (f ◦ p ◦ q0, . . . , f ◦ p ◦ qk−2, f ◦ qk−1).

Notice that fk is a bijection for all k ∈ N.

Let a : N→
⋃
k∈N

Qk
Φ be defined as

a(m) = fp(m)(q(m)) for all m ∈ N.

Notice that a is a bijection.

Now, let us define the hypercyclic transvector w ∈ (RT )N. For each k ∈ N
and each i ∈ N, define πk,i : Qk

Φ → QΦ where, for each x = (x1, . . . , xk) ∈ Qk
Φ,
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πk,i(x) = xi when i ≤ k and πk,i(x) = 0 when i > k. Define πi :
⋃
k∈N

Qk
Φ → QΦ

where, for each x ∈
⋃
k∈N

Qk
Φ, πi(x) = πk,i(x) when x ∈ Qk

Φ. We denote s0 := 0

and, for each m ∈ N, we denote sm =
∑m

k=1 p(k). We define w ∈ (RT )N

in the following way: wi := πi(a(1)) when i ≤ p(1) and, for each m ∈ N,
wi := πi−sm(a(m+ 1)) when sm < i ≤ sm+1.

Theorem 2.1 The element w, as defined above, is hypercyclic with respect to
the backward shift in the space (RT )N.

Proof. Let u ∈ (RT )N be arbitrary. Given ε > 0 arbitrary, take n ∈ N such

that n >
2

ε
and v = (v1, . . . , vn) ∈ Qn

Φ such that

d(vi, ui) < ε for all i ∈ {1, . . . , n}. (3)

As v ∈
⋃
k∈N

Qk
Φ, there is m ∈ N such that a(m) = v whence fp(m)(q(m)) = v and

p(m) = n. Notice that

Bsm−1w = ( wsm−1+1, . . . , wsm−1+p(m), wsm−1+p(m)+1, . . . )
= (π1(a(m)), . . . , πp(m)(a(m)), wsm−1+p(m)+1, . . . )
= ( π1(v), . . . , πp(m)(v), wsm−1+p(m)+1, . . . )
= ( v1, . . . , vp(m), wsm−1+p(m)+1, . . . )
= ( v1, . . . , vn, wsm−1+n+1, . . . )

whence, by (2),

D (Bsm−1w, u)

=sup

{
d(wsm−1+1, u1)

1
,. . . ,

d(wsm−1+p(m), up(m))

p(m)
,
d(wsm−1+p(m)+1, up(m)+1)

p(m) + 1
,. . .

}
=sup

{
d(v1, u1)

1
, . . . ,

d(vn, un)

n
,
d(wsm−1+n+1, un+1)

n+ 1
, . . .

}
.

But, for all α, β ∈ RT , by (1), d(α, β) ≤ 2 whence

d(wsm−1+i, ui)

i
<

2

n
< ε for all i ∈ {n+ 1, n+ 2, . . . }. (4)

Thus, by (3) and (4), D (Bsm−1w, u) < ε. As u was taken in (RT )N arbitrarily,
it follows that orb(w,B) is dense in (RT )N whence w is hypercyclic with respect
to B. �

This construction of the universal world, w, is so explicit that we can deter-
mine the exact transreal number which is the i-th co-ordinate of w for all i ∈ N.
For example, let us determinate w20. Notice that p(1) = 1, p(2) = 2, p(3) = 1,
p(4) = 3, p(5) = 1, p(6) = 2, p(7) = 1, p(8) = 4, p(9) = 1, p(10) = 2, p(11) = 1
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and p(12) = 3 whence s11 =
∑11

k=1 p(k) = 19 < 20 ≤ 22 =
∑12

k=1 p(k) =
s11+1. Hence, w20 = π20−s11(a(11 + 1)) = π20−19(a(12)) = π1(a(12)). But

a(12) = fp(12)(q(12)) = f3(q(12)) and q(12) =
12

2p(12)−1 + 1

2
=

12
23−1 + 1

2
= 2

whence a(12) = f3(2). But f3(2) = ((f ◦ p)(2), (f ◦ p ◦ q)(2), (f ◦ q ◦ q)(2)) =
(f(p(2)), f(p(q(2))), f(q(q(2)))) and q(2) = 1 and q(1) = 1 whence f3(2) =
(f(p(2)), f(p(1)), f(q(1))) = (f(2), f(1), f(1)). But f(1) = Φ and f(2) =
t(h(1)) = t(0) = 0 whence f3(2) = (0,Φ,Φ). Thus, a(12) = (0,Φ,Φ) whence
π1(a(12)) = 0. Therefore, w20 = 0.

3 Explicit Construction of a Discrete Transreal
Universal Possible World

In this section we explicitly construct a vector with a dense orbit, with respect
to the backward shift operator, in the Cantor Space {0, 1}N. This vector is one
of our possible worlds, albeit one whose every co-ordinate is zero or one, not a
general transreal number.

The vector is a particular, indefinitely long, binary sequence which, by con-
struction, enumerates all finitely long, binary sequences. Computer Science
makes very heavy, almost universal, use of binary sequences. Here we use it
to enumerate trans-floating-point numbers [1] [3] but, more generally, we could
use it to enumerate many, if not all, of the abstract objects Computer Science
considers.

A Cantor Space is a topological space that is homeomorphic to the Cantor
set. A very simple Cantor space is {0, 1}N, the countably infinite, topological
product of the discrete space {0, 1}. In other words, we take {0, 1} with the
discrete topology, that is, the open sets of the space {0, 1} are: ∅, {0}, {1} and
{0, 1}. And {0, 1}N =

∏
j∈N{0, 1} = {0, 1} × {0, 1} × · · · is endowed with the

product topology. Recall that, in a product topology, U ⊂ {0, 1}N is open if and
only if U =

∏
j∈N Uj = U1 × U2 × · · · , where Uj is open on {0, 1} for all j ∈ N

and Uj = {0, 1}, except for finite many indexes j.
Let B : {0, 1}N −→ {0, 1}N be the backward shift operator, as described

above. Whence, B(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ) for every (x1, x2, x3, . . . ) ∈
{0, 1}N. Notice that B is continuous.

We now explicitly construct an element with a dense orbit, with respect to
B in {0, 1}N. Firstly, for each n ∈ N, denote sn = 20 × 0 + 21 × 1 + 22 × 2 +
· · ·+ 2n−1× (n− 1). Secondly let v = (v1, v2, v3, . . . ) ∈ {0, 1}N be defined in the
following way: for each n ∈ N and each k ∈ {0, 1, 2, . . . , 2n − 3, 2n − 2, 2n − 1},

vsn+kn+1vsn+kn+2 · · · vsn+kn+(n−1)vsn+kn+n

is the binary representation of k in n digits.
To facilitate understanding of the element v we give some of its initial co-

ordinates.
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• For n = 1 we have s1 = 20×0 = 0 and k sweeping through {0, . . . , 21−1} =
{0, 1}.

– For k = 0, vs1+0×1+1 = v1 is the binary representation of k = 0 in
n = 1 digit whence v1 = 0.

– For k = 1, vs1+1×1+1 = v2 is the binary representation of k = 1 in
n = 1 digit whence v2 = 1.

• For n = 2 we have s2 = 20 × 0 + 21 × 1 = 2 and k sweeping through
{0, . . . , 22 − 1} = {0, 1, 2, 3}.

– For k = 0, vs2+0×2+1 = v3 and vs2+0×2+2 = v4, so v3v4 is the binary
representation of k = 0 in n = 2 digits whence v3v4 = 00. Thus
v3 = 0 and v4 = 0.

– For k = 1, vs2+1×2+1 = v5 and vs2+1×2+2 = v6, so v5v6 is the binary
representation of k = 1 in n = 2 digits whence v5v6 = 01. Thus
v5 = 0 and v6 = 1.

– For k = 2, vs2+2×2+1 = v7 and vs2+2×2+2 = v8, so v7v8 is the binary
representation of k = 2 in n = 2 digits whence v7v8 = 10. Thus
v7 = 1 and v8 = 0.

– For k = 3, vs2+3×2+1 = v9 and vs2+3×2+2 = v10, so v9v10 is the
binary representation of k = 3 in n = 2 digits whence v9v10 = 11.
Thus v9 = 1 and v10 = 1.

• For n = 3 we have s3 = 20 × 0 + 21 × 1 + 22 × 2 = 10 and k sweeping
through {0, . . . , 23 − 1} = {0, 1, 2, 3, 4, 5, 6, 7}.

– For k = 0, vs3+0×3+1 = v11, vs3+0×3+2 = v12 and vs3+0×3+3 = v13,
so v11v12v13 is the binary representation of k = 0 in n = 3 digits
whence v11v12v13 = 000. Thus v11 = 0, v12 = 0 and v13 = 0.

– For k = 1, vs3+1×3+1 = v14, vs3+1×3+2 = v15 and vs3+1×3+3 = v16,
so v14v15v16 is the binary representation of k = 1 in n = 3 digits
whence v14v15v16 = 001. Thus v14 = 0, v15 = 0 and v16 = 1.

– For k = 2, vs3+2×3+1 = v17, vs3+2×3+2 = v18 and vs3+2×3+3 = v19,
so v17v18v19 is the binary representation of k = 2 in n = 3 digits
whence v17v18v19 = 010. Thus v17 = 0, v18 = 1 and v19 = 0.

– For k = 3, vs3+3×3+1 = v20, vs3+3×3+2 = v21 and vs3+3×3+3 = v22,
so v20v21v22 is the binary representation of k = 3 in n = 3 digits
whence v20v21v22 = 011. Thus v20 = 0, v21 = 1 and v22 = 1.

– For k = 4, vs3+4×3+1 = v23, vs3+4×3+2 = v24 and vs3+4×3+3 = v25,
so v23v24v25 is the binary representation of k = 4 in n = 3 digits
whence v23v24v25 = 100. Thus v23 = 1, v24 = 0 and v25 = 0.

– For k = 5, vs3+5×3+1 = v26, vs3+5×3+2 = v27 and vs3+5×3+3 = v28,
so v26v27v28 is the binary representation of k = 5 in n = 3 digits
whence v26v27v28 = 101. Thus v26 = 1, v27 = 0 and v28 = 1.
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– For k = 6, vs3+6×3+1 = v29, vs3+6×3+2 = v30 and vs3+6×3+3 = v31,
so v29v30v31 is the binary representation of k = 6 in n = 3 digits
whence v29v30v31 = 110. Thus v29 = 1, v30 = 1 and v31 = 0.

– For k = 7, vs3+7×3+1 = v32, vs3+7×3+2 = v33 and vs3+7×3+3 = v34,
so v32v33v34 is the binary representation of k = 7 in n = 3 digits
whence v32v33v34 = 111. Thus v32 = 1, v33 = 1 and v34 = 1.

Thus the thirty four, initial co-ordinates of v are 0, 1, 0,0, 0,1, 1,0, 1,1,
0,0,0, 0,0,1, 0,1,0, 0,1,1, 1,0,0, 1,0,1, 1,1,0, 1,1,1.

Theorem 3.1 The element v, as defined above, has dense orbit with respect to
B in the Cantor space {0, 1}N.

Proof. Let x = (xj)j∈N ∈ {0, 1}N be arbitrary. Let U be an arbitrary
neighborhood of x in {0, 1}N. Then there is n ∈ N such that U =

∏
j∈N Uj =

U1 × · · · × Un × Un+1 × · · · , where Uj ⊂ {0, 1} for all j ∈ N, Uj = {0, 1} for all
j ≥ n+ 1, and xj ∈ Uj for all j ∈ {1, . . . , n}.

Notice that x1 · · ·xn is the binary representation of k in n digits for some
k ∈ {0, 1, 2, . . . , 2n − 3, 2n − 2, 2n − 1} whence

(x1, . . . , xn) = (vsn+kn+1, . . . , vsn+kn+n)

for some k ∈ {0, . . . , 2n − 1}. Hence Bsn+kn(v) ∈ {x1} × · · · × {xn} × {0, 1} ×
{0, 1} × · · · ⊂ U1 × · · · × Un × {0, 1} × {0, 1} × · · · = U . Thus Bsn+kn(v) ∈ U∩
orb(v,B) whence U∩ orb(v,B) 6= ∅. Since x was taken arbitrary in {0, 1}N,
orb(v,B) is dense in {0, 1}N. �

Floating and trans-floating-point numbers, n, are of the general form n =
−1smm2−1see where sm is the sign of the mantissa, m is the absolute value of
the mantissa, se is the sign of the exponent, and e is the absolute value of the
exponent. We can define a hypercyclic trans-floating-point number by defining
its elements bijectively with the elements of a hypercyclic binary sequence, as
follows. Let v be the hypercyclic binary sequence defined above. Take the even
elements of v to be the mantissa and the odd elements to be the exponent, such
that: v0 = sm is the sign of the mantissa and v2 = m0, v4 = m1, v6 = m2, ...
are successive bits of the mantissa, starting from the least significant bit at m0.
Similarly v1 = se is the sign of the exponent and v3 = e0, v5 = e1, v7 = e2, ... are
the bits of the exponent in order of increasing significance. We identify: n = 0
with sm = 0, all bits of mantissa zero, se = 1, all bits of the exponent unity;
n = Φ with sm = 1, all bits of mantissa zero, se = 1, all bits of the exponent
unity; n = ∞ with sm = 0, all bits of mantissa unity, se = 0, all bits of the
exponent unity; n = −∞ with sm = 1, all bits of mantissa unity, se = 1, all bits
of the exponent unity. Thus we obtain a hypercyclic trans-floating-point space
that approximates a hypercyclic transreal space. We may map any of the usual
data structures used in computer science onto a hypercyclic space by arranging
a bijection between a hypercyclic sequence and the bits of the data structure.
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4 Philosophy of an Omniscient Observer

We wish to give a logical description of an omniscient observer. Let us start by
considering that an observer is a transvector in the logical space (RT )N. Thus
every result that is valid concerning possible worlds is also valid when related
to the logical space in which points are observers.

An observer, Ok, is a sequence of transreal numbers 〈ok1, ok2, ..., okm〉. If
the value of okm is plus infinity, then Ok is “willing” to consider the atomic
proposition, Pm, as absolutely true. If the value of okm is minus infinity, then
Ok is “willing” to consider Pm as absolutely false. If the value of okm is a real
number, r > 0, then Ok is “willing” to consider Pm true in some degree, in such
a way that, if r1 > r2, and r1 and r2 are transreal numbers related, respectively,
to P1 and P2, then P1 is more true than P2. If the value of okm is a real number,
r < 0, then Ok is “willing” to consider Pm false in some degree, in such a way
that, if r1 < r2, and r1 and r2 are transreal numbers related, respectively, to
P1 and P2, then P1 is more false than P2. If the value of okm is zero then Ok

is “willing” to consider Pm as being false and true simultaneously. If the value
of okm is nullity then Ok is “willing” to consider Pm as being neither false nor
true. If the value of okm is in the extended-real range [−∞,∞] then the observer,
Ok, is “willing” to consider Pm to be an “actual proposition,” otherwise okm is
nullity and Pm is a “pseudo proposition” with no degree of truth or falsehood.

What about the existence of a Universal Observer, an hypercyclic transvec-
tor that can access by approximation every other observer? As proved in the
present paper, this kind of observer exists in the abstract, and can be seen as a
transvector whose coordinates are nullity or rational numbers, or as a transvec-
tor whose coordinates are 0 or 1. In both cases, an interesting consideration
emerges: A Universal Observer is the mathematical translation of some “con-
sciousness” that has access, by approximation, to all other “consciousnesses.”
Since an Observer is a sequence of transreal numbers that give us the “degree
of belief” that an Observer has in a sequence of “states of affairs” – we can, in a
very general way, consider each Pm as a “state of affairs” (an actual proposition
or else a pseudo proposition). Then we can stress: the consciousness that has
access to all other consciousnesses, via approximation, “operates” with some
pseudo propositions, not just with “actual” or classical propositions. In Phe-
nomenological terms: The “state of affairs” of the Universal Observer starts
from a configuration of the world that is not objective, but it is, in some sense,
an ideal configuration because it contains some pseudo propositions.

A Universal Observer – an Omniscient Observer, since He knows what lies in
the Mind of every Observer – is positioned in the Logical Space as some kind of
God that can see our thoughts about the world. This observer is, however, not
unique. There are infinitely many such observers, positioned infinitely densely in
our logical space. However, if we identify all such observers as a single individual
then this individual in omnipresent in space, in the sense that He is arbitrarily
close to every point in space. Thus omnipresence follows from omniscience in
our logical space.
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5 Philosophy of Science

We have shown that there are infinitely many universal possible worlds that
can be operated on, by mechanical means, to approximate all other possible
worlds arbitrarily closely. That is, there are infinitely many hypothesis engines
that can mechanically generate all possible hypotheses arbitrarily closely. As
all actual worlds are, self-evidently, possible, this means there are infinitely
many hypothesis engines that can arbitrarily closely describe the world, indeed
the universe, we live in. Furthermore, these hypothesis engines are infinitely
dense so infinitely many of them lie arbitrarily close to the thoughts of every
mathematician, scientist, and philosopher, as well as being arbitrarily close to
the operations of every computer. These abstract hypothesis engines can, in
principle, access all of our thoughts but how closely can we access them? Can we
build experimental engines and couple them with hypothesis engines to conduct
science automatically?

6 Conclusion

We explicitly construct two universal worlds that approximate all logically pos-
sible worlds in a hypercyclic sequence. A continuous universal world constructs
possible worlds with transreal co-ordinates directly. A discrete universal world
provides a binary hypercyclic vector which can be used to create transfloating-
point co-ordinates that approximate transreal co-ordinates and which, therefore,
provides a computable approximation to a universal world. We also discuss the
philosophical implications of universal worlds for an omniscient observer and
find that omniscience implies omnipresence in our logcial space.
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