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Abstract

A new definition of algorithms is given, where algorithms are under-
stood as cognitive ‘entities,’ the definition of which is done in tandem
with so-called algorhymes, which are entities serving as documentation
of algorithms. Algorithms are cognitions while algorhrymes are artifacts.
Based on this definition the notions of fault and defect are reconsidered
in relation to instruction sequences, programs and algorithms. Programs
as well as algorithms are considered capable of containing moral defects,
the notion of a moral defect is developed in some detail. The notion of a
moral fault is considered implausible.

1 Introduction

I will use the notion of an instruction sequence with a required interface as
outlined in [4] and [18, 22] as well as the introduction in [23], and the refer-
ences cited therein. I will start with recapitulating a definition of the notion of
program from previous work.

1.1 Definition of program

From [12] I paraphrase the following definition of a program.

Definition 1.1. A program is an element of a collection of entities L (program
notation) for which a computable mapping L2IS is known (called projection func-
tion in [12]) which turns p ∈ L to an instruction sequence Xp = L2IS(p) in such
a manner that the meaning of p consists of the behaviour of X when it is put
into effect on a platform known for being able to process instruction sequences
coming from many sources.
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Here the projection function may be achieved by computation of another
instruction sequence XC (serving as a compiler), which may result from appli-
cation of the projection function to yet another another program.

For a program it is not essential that there actually is a machine able to per-
form the compilation, that is the compiler has been implemented and putting
that implementation into effect can actually achieved on real machines. Pro-
grams may be practical entities in real life program notations or theoretical
entities (pseudocodes) which merely define input for a possibly equally theoret-
ical compiler. For further elaboration on this notion of program and the corre-
sponding projection semantics I refer to [8] which deals with recursion and [15]
which deals with the combination of Object Oriented (OO) programming and
multi-threading.

Unfortunately, like all definitions of what a program is, which go beyond the
world of expressions of a specific notation, Definition 1.1 has significant defi-
ciencies. In this case first of all the nature of the instructions requires attention.
I will assume as in most work on instruction sequences from [24] onwards that
basic instructions use focus method notation f.m where f is a focus, i.e. a name
under which a service is found (say service F ) and m names a method to be
applied to F or, in other words, which F is asked/called/requested/ordered to
process. The consequences of a call f.m are threefold: (i) potentially a state
change of the service, (ii) potentially interactions with other system components
which the service is connected to, (iii) a single bit reply which is returned to
the unit which is putting the calling instruction sequence into effect and which
may influence the future behaviour of that unit.

When stating that the projection function L2IS may be computed by means
of a (previously) determined instruction sequence (the compiler) it matters
which services the compiler may use. If the functionality to be computed is
merely a transformation from bit sequences of a fixed length n to bit sequences
of fixed length m it suffices to make use of single bit memory services only,
though allowing array-like services admitting indirect access (see e.g. [4] for a
definition of arrays as services) will allow to write instruction sequences with
fewer instructions (a lower LLOC, logical lines of code, metric in the terminol-
ogy of [4]). For multi-threading on a single processor the same model applies
(see [13]). For multi-threading in the context of distributed computing and in
the context of non-deterministic interactive and parallel computation the limi-
tation to single bit services and array-services do not suffice. I refer to [14] for
possible options to be used in such cases. Determination of which services an
instruction sequence may use constitutes a degree of freedom in Definition 1.1
which is a weakness of the definition at the same time. I hold that the concept
of services is open ended and that future technologies will reveal new options
for constructing services which will impact on what can be computed by means
of an instruction sequence.

In Section 3, I will expand on the collection of available services and on the
related notions of the required interface for a program and the provided interface
for a service family.
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1.2 Requirements specification and technical specification

The notion of a program is independent of any notion of specification of be-
haviour. A program may perfectly well serve as its own specification so to
say, perhaps complemented with some comments and explanation. Although in
computer science it is conventional to understand programs as artefacts which
are supposed to comply with pre-existing specifications or requirements, I pre-
fer to view specifications as no more than tools available to manage the design,
construction, and use of programs. A specification need not be formal, it may
also consist of informal user expectations. In some cases, in the presence of a
specification, it is possible to assess a terminated or ongoing computation and
to spot a deviation from specified behaviour. In that case a failure has been de-
tected. So for programs, a notion of failure comes with a notion of specification,
and a computation failing to comply with the specification.

I will assume that specifications come in two forms (at least): a require-
ments specification which provides information on what a program when in use
will provide to its context and a technical specification which provides informa-
tion on what precisely the program is supposed to perform in terms of inputs,
outputs, communication, timing, and usage of resources, and which may also
provide information about the modular structure of a program and about the
various functionalities that these modules are supposed to deliver. A technical
specification may be at odds with the requirements specification for the same
(imagined) system. If a minor change in the specification settles the problem it
is plausible to speak of a fault in the specification. The situation may be quite
different, however, to such an extent that fault repair does not apply and re-
design of the specification is needed, or worse, no redesign can succeed because
the requirements are unimplementable. One may refer to a problem of that kind
a RS/TS flaw (req. spec/ tech. spec. flaw). I will use dedicated terminology
for the various RS/TS-flaws which may arise.

The requirements specification may further be decomposed into a functional
requirements specification and a moral requirements specification. While a func-
tional requirements specification focuses on how a program may contribute to
overall system functionality, the contents of a moral requirements specification
are much harder to grasp. Ideally a moral requirements specification must be
such that (i) all moral faults will be captured as mismatches between system
behaviour and requirements specification (as discussed in Section 4 below), and
(ii) it will be clear which parts of the software in control of a system are re-
sponsible for various moral faults. Moral software fault is a remarkably complex
notion, however, which cannot be captured in functional terms.

1.2.1 Technical specification and failure

I will understand a (program) failure, by default, as a mismatch between the
behaviour of a program and its technical specification. In the absence of a tech-
nical specification a program cannot fail. If the program does not implement its
requirements, again a mismatch, though coming to light by way of an assessment
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which may well be informal because the requirements at hand are informal, I
prefer to refer to that problem as a program/RS-flaw. A program/RS-flaw may
find its origin in a problem with the program but just as well in a problem with
the requirements specification.

If, however, it can be established that a program/RS-flaw works just as an
ALR fault (as defined below), then the default is over-ruled and said mismatch
can be termed a failure.

1.2.2 Faults as causes of failures

The terminology of fault as cause of failure was introduced in Laprie [33], while
appearing in a more definitive form in Avižienzis, Laprie & Randell [2] and later
in Avižienzis, Laprie, Randell, & Landwehr [3].

Definition 1.2 (ALR fault). An ALR (for Avǐzienzis, Laprie & Randell) fault
is a program fragment which is the cause of an error which in turn is the cause
of a failure.

The concept of an ALR fault in a program X is a theoretical notion – it does
not matter whether or not its being a fault has actually been detected either
empirically or by other means. The idea of an ALR fault allows a ramification of
different instantiations depending on how the notion of causality is understood.
For a survey of interpretations of causality in the context of ALR I refer to [6]
and [7]

1.2.3 Failures: how to define?

If a mathematical function is to be computed then a failure is simply a wrong
output. If, however, a program is supposed to control the embedded computer
of an airplane, it is much less clear what a failure might be. For an airplane as
a system the notion of a failure is clear, but what are failures of components?
Clearly if an engine explodes that will count as a failure, but for embedded
programs the situation is less obvious. In the case of embedded software some
failures may be caused by properties of the software while other failures may not
be. Nevertheless, assuming the idea of an ALR fault, for embedded programs:
whenever there is a notion of overall system failure and a conception of causality
there is a derived notion of (embedded) program fault.

1.2.4 Semantic mismatch failure versus overall system failure

I assume that if a program fails it is in fact a related instruction sequence (the
result of projection/compilation) the effectuation of which fails, either in theory
or in practice. Now still there is a need to distinguish at least two cases:

(i) (Semantic mismatch failure) The failure is a mismatch between the in-
tended semantics of the instruction sequence and its actual semantics. Here
semantics is some mathematical or logical construct which abstracts from the
inner working of the process of putting the instruction sequence into effect and
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achieves some externally visible form of behaviour from it. A semantic mis-
match failure can only be present if an intended semantics (often referred to
as functional specification and referred to as a technical specification) in the
introduction of Paragraph 1.2) is known or available.

(ii) (Overall system failure) The failure is a system failure of a system of
which said instruction sequence is a component. For instance in [9, 10] two
crashes of aircraft are discussed. In both cases a system in which a certain
software component (in this case the implementation, say X, of the MCAS
algorithm) plays a role, fails at a system level. Whether or not this failure has
anything to do with a certain software component is not at all easy to assess.
But if a local change of X creates a modified system which would not have
crashed in a similar way, and which would not be more likely to crash under
different conditions, then it is plausible to consider the program fragment which
is to be modified as in X as a cause for the crash and to qualify it as a fault.
The local change must solve a problem so as to obtain an improvement, that is
without creating too many new problems.

1.2.5 System failures which cannot be caused by instruction se-
quence faults

Consider a car which is equipped with cameras at the front but not at the
back. The car is, however, equipped with a program which provides automatic
parking. I assume that the car is rather conventional and backward driving
cannot be avoided when parking, at least in some cases. In principle that can
be done: in forward position the car’s eyes scan the scene, the car turns around
and knows exactly how to park. Unfortunately and wrongly, however, during
the parking process, a bike is placed by a careless child on the location where
the car expects to get parked and the back of the car collides with the bike.
Now a system level failure has arisen. One may ask if the implementation of the
parking algorithm is at fault. Upon closer investigation one may conclude that
in the absence of one or more cameras at the back of the car, and in the absence
of other remote sensing capability at the back of the car, it is unreasonable to
expect the algorithm to prevent this sort of collision.

In [40] the notion of an unsynthesizable specification is introduced and meth-
ods are proposed for the detection of such specifications in the context of robot
programming. In general it may be too hard to determine whether or not a
specification admits implementation by any other method than trying to imple-
ment it. In robotics, whether or not a specification can be implemented is not
simply a matter of logic and mathematics because generic program notations
will be used to control different robot embodiments for given tasks (see [1]).
Unavoidably it will also depend on the actual robot embodiment being used
whether or not a given goal can be reached.

Instead of the introduction of a program fault, or a program defect of a
known kind, it may be the case that in some other way the program will not
deliver as expected. Now it may be so that during the software process one
or more of the steps have not been taken in accordance with the prescribed
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software process. If that is the case a software process flaw has arisen (see [10]
for that notion): it has not been noticed during the software development phase
that the sensor hardware of the car is insufficiently powerful to create a context
where a program can do the parking. The software development process should
have been stopped, and not delivering a program for parking might have been
best.

1.3 Research questions for the paper

The paper aims at providing a definition of a notion of algorithm and then
working towards an understanding of notions of fault and defect for algorithms.
Secondly an attempt is made to make sense of the notions “moral program
defect” and “moral program fault.”

Although I am discussing faults throughout the paper, which I understand
in connection with single connected fragments being at fault, the discussion
can be generalized to so-called multi-hunk faults (see [43]), which consist of a
plurality of fragments each of which is supposed to be changed when repairing
the fault. The notion of fault as used below is quite restrictive in comparison to
its interpretation in works of fault or defect categorization (see e.g. [38]). The
intended notion of fault is consistent with the notion of an ALR fault (as given
in 1.2 above), and also with the faults which are targeted in spectrum based
fault localization ([46, 47]).

2 Algorithms: a cognition based definition

Defining algorithms as a mathematical or logical notion has not been successfully
done in the literature thus far. I will define algorithms in an informal manner,
thereby implicitly assuming that a formal definition of algorithms cannot be
given. I will refer to the definition of algorithm as given below as a cognition
based definition. I have no doubt that other definitions of algorithm can be
provided as well.

2.1 Tandem definition of algorithm and algorhyme

The above definition of a program is open ended in the sense that increasingly
more developed and complex program notations allow writing a compiler (an
algorhyme) for increasingly developed and complex program notations. Taking
advantage of this definition of programs, it is possible to define algorithms in
tandem with so-called algorhymes. Algorithms are cognitions while algorhrymes
are artifacts (nowadays probably text in digital form).

Definition 2.1. (Algorithm) An algorithm is an idea (a cognitive/mental con-
cept) about how to perform a certain computation with an idea in mind of what
it is supposed to achieve, both in terms of functionality and in terms of per-
formance and resource utilisation. An algorithm is documented by a family of
algorhymes, which collectively convey the underlying intuition/idea/cognition.
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In theory one would hope that an algorithm is an equivalence class of algo-
rhymes, where algorhyme and a corresponding notion of equivalence are unam-
biguously defined. However there is no indication that a (pseudo) mathemath-
ical definition of that form can be achieved. In practice at any moment of time
there is a “flock” (i.e. a collective of entities of the same kind) of algorhymes
which together constitute the current view of the algorithm, and algorhymes are
regularly rewritten into new program/pseudocode notations in order to maxi-
mize appeal and accessibility.

An algorithm may be compared with a theorem with the different proofs
being algorhymes. Perhaps more convincingly an algorithm may be compared
with an invention and its document with a patent description of it. If the
patent office rejects a patent proposal that means that another description of
the same invention is contained in an existing and approved or pending patent
or in known prior art. The very notion of novelty, with respect to prior art,
only exists because the content of a proposed patent file is understood as being
more abstract than any individual representation or documentation of it.

Definition 2.2. (Algorhyme) An algorhyme is a program or pseudocode which
is meaningful and comprehensible for a human reader and which is understood as
the documentation of an algorithm. Two algorhymes are algorithmically equiv-
alent if they document the same algorithm. Algorithmic equivalence is a matter
of informal judgement by human agents rather than of formal definition.

Algorithm and algorhyme are defined in tandem as these notions cannot be
defined independently of one another.

A typical algorithm is C.A.R. Hoare’s Quicksort. Quicksort is so to say a
“conceptual average” of its documentations via programs and pseudocodes in
the literature. The key idea is one-dimensional divide and conquer for a task
which can be performed in a bottom up manner.

Unlike algorithms, algorhymes can be quantified in detail regarding various
aspects of complexity and performance. Algorithmic equivalence is an informal
notion which applies to algorhymes. Decisions about algorithmic equivalence
are human decisions, which may be taken in court, rather than matters of logic
and mathematics.

Definition 2.3. (Algorithmic equivalence) Two algorhymes are algorithmically
equivalent if both are documentations of the same algorithm.

Algorithmic equivalence is defined on algorhymes understood as documen-
tation of algorithms. Without a context in which algorhymes play the role of
documenting an algorithm it is meaningless to speak of algorithmic equivalence.
It is also not implied that if instruction sequences X and Y implement algorith-
mically equivalent algorhymes A and B respectively, a relation of algorithmic
equivalence must hold between X and Y . It is plausible, however that algo-
rithmic equivalence holds between the pairs (X,A) and (Y,B) which each may
serve as documentations of the respective algorithms.

Definition 2.4. (Algorhyme design) An algorhyme design is a design, the re-
alisations of which are algorithmically equivalent algorhymes.
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In the definition of algorithm also algorhyme designs may be included, be-
sides algorhymes, as possible documentations of algorithms.

Algorhymes are not merely specifications because algorhymes come with an
awareness of “how to compute”, which may but need not be the case for a
specification. A specification may be inconsistent (asking to compute a value
or pattern that does not exist) or may be impossible to implement (asking to
determine information which cannot be found with the available tools), and
such a state of affairs is manifestly inconceivable for an algorhyme.

2.2 Some comments on algorithm versus algorhyme

The difference between an algorithm and an algorhyme is as big as the difference
between an invention and the textual description of the invention. For human
readers two algorhymes may “clearly” describe the same method for solving a
problem, the differences being only minor.

Minor differences between algorhymes A1 and A2 which supposedly docu-
ment the same algorithm A, can take the following forms for instance (in an
arbitrary order, the listing being far from complete): (i) use of different pro-
gram notations, technical specification notations or pseudo-code notations, (ii)
different ordering of initialisation of registers, different ordering of actions when
independent steps are performed in some essentially arbitrary order, different
naming of auxiliary registers, different naming of methods, classes, and of formal
parameters, (iii) different ordering in the listing of classes, (iv) use of different
libraries for essentially the same purpose, different levels of “outsourcing” of
tasks to external libraries, (v) marginally different structure of the class hierar-
chy, (vi) use of iteration versus use of tail recursion, (vii) use of different data
structures for the same purpose, where both may be helpful, (viii) use of differ-
ent synchronisation primitives for concurrency, use of different message passing
mechanisms, (ix) different degrees of algorithmic optimisation, (x) differences
in exploitation of the presence of garbage collection, (xi) different levels of gen-
erality in terms of the ease of interfacing with other programs, (xii) different
style of preparation for testing and/or different style of annotation for formal
verification.

Both A1 and A2 unavoidably come with a significant amount of inessential
detail, when understood as documenting A, and it is a matter for a human ob-
server to assess when an accumulation of differences adds up to a real difference
in terms of an algorithm being documented. By distinguishing algorithm from
algorhyme Intellectual Property Right (IPR) protection of algorithms is com-
pletely disentangled from notions of copyrighting which prevail in the world of
programs and which do apply to algorhymes.

2.2.1 Can an algorhyme contain a fault?

I will return to this question below in Section 4, but a general remark about
this somewhat tricky question can be made here. A reasonable comparison is
with mathematical proof. Then I compare an algorithm with the idea of a proof
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and an algorhyme with a textual presentation of that idea, that is with what
mathematicians usually call a proof. Is a proof still a proof if it contains a
fault? For example the proof is not valid, as given, but can be turned into a
valid proof by means of a minor textual change. We find that just as a proof can
contain a fault an algorhyme can contain a fault, where it is essential that the
fault comes with the possibility of local repair. If the proof is wrong in a more
significant manner it contains a defect. Then the proof is not a proof anymore,
and a new approach is needed (if the envisaged conclusion can be shown at all).
So a proof cannot be defective without losing its status as a proof. The same
situation applies to an algorhyme: once the conclusion has been drawn that
“it is not what we want,” the algorhyme ceases to serve as the documentation
of an underlying idea. For historical purposes one may have an interest in the
algorhyme as a “documentation” of a defective algorithm in order to prove in
some later phase that it was not the case that an agent P knew of a certain
algorithm at some stage. Such a conclusion may matter for instance in case of
conflicts regarding IPR.

2.2.2 Can an algorhyme contain a fault?

Given an algorithm A and its collection of documenting algorhymes Ai. Sup-
pose that upon further analysis it appears that for each of the algorhymes it is
clear that the intended requirements specification will not be satisfied with an
implementation of the algorhyme then the algorithm is defective.

Claiming that the algorhyme is faulty comes with a concept of repair of an
algorhyme. In Section 4, I will discuss this matter in more detail. Making use
of so-called reification of an algorithm by means of a flock of algorhymes it is
meaningful to speak of a fault in an algorithm. Returning to the comparison be-
tween algorhyme and proof: a proof idea is reified by a flock (a finite collection)
of proofs that follow the idea. It may turn out to be the case that each of these
proofs contains a fault and that in a uniform manner each of the proofs can be
locally repaired by changing a certain fragment in a fairly uniform manner. In
this, admittedly unlikely, situation it is reasonable to say that the proof idea
contains a fault. In a similar manner an algorithm may contain a fault if the
algorithm is identified with, that is reified by, a finite collection of its purported
algorhymes. If these are faulty and repairable in a uniform manner that state
of affairs reveals a fault of the algorithm proper.

2.3 Algorithms and intellectual property rights

When contemplating intellectual property rights for computer software, such
rights may concern at least these classes of entities: (i) computer software (rang-
ing from source code, via intermediate notations to object code), (ii) computer
programs, (iii) (computer) program documentation (including: informal, formal,
or computed verifications; test suite reports; documented user experiences), (iv)
algorhymes (including designs), (v) algorithms, (vi) specifications (both func-
tional, non-functional and combined), (vii) requirements (that is specific col-
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lections of requirements), (viii) software engineering methods, (ix) features of
program notations, (x) software tools for software engineering.

IPR may be of several types including (a) copyright, (b) invention based
patent, (c) design patent, and (d) trademark. The famous “Intel inside” noti-
fication indicates how trademarking may be of importance for computers and
software. Each of these IPR types can be contemplated in a range of jurisdic-
tions and legal systems, as well as in the light of a body of literature, and as
concepts open for academic reflection from first principles.

Acquisition of IPR of a certain type for an entity of a certain class may be
obtained under certain circumstances only, the details of which are sensitive to
legal frameworks and jurisdictions. Nevertheless instantiations of the follow-
ing criteria and phenomena play a role: (1) novelty, (2) (non)obviousness, (3)
utility, (4) enabledness, (5) disclosure of enabledness, (6) scope, (7) prior art,
(8) eligibility and statutory subject matter, (9) filing and granting, (10) licenc-
ing and use, (11) infringement and litigation, and (12) moral/ethical/societal
justification or disqualification.

Not all combinations of entity class, IPR type and criterion/event are rele-
vant. Seeking a design patent for compiled code is implausible, while using a
trademark to highlight a key role in a piece of equipment of that same object
code may be plausible. Having, filing or aspiring a design patent on a visual
rendering of an algorhyme is not inconceivable. Patenting algorithms “as such”
is often seen as lacking of moral/ethical/societal justification. Apparently a
combinatorial explosion of combinations can be imagined and, upon being con-
sidered of potential relevance, investigated in further detail.

In the context of computer software, copyrighting is most common, with
invention based patenting as a second IPR type but only marginal roles for the
other types of IPR. In this section I provide some comment relating algorithms,
algorhymes and programs to copyrights and patents.

2.4 Human judgement at different levels of abstraction

The definition of algorithm, supported by a definition of algorhyme, can be
contemplated in the light of theory about copyrights and patents for software.
These topics are complex, dependent on legal systems and traditions, and are
to some extent controversial.

Nevertheless, the notion that deciding algorithmic equivalence is a matter
of human judgement, as stated above, is unsurprising from the perspective of
say patenting. Whether or not a proposed invention replicates acknowledged
prior art is a human decision to be taken with the help of procedural protocols.
Similarly whether or not a given device, process, or material constitutes an
infringement of a given patent is a matter of human judgement.

In [37] it is shown how the classical theory of justice Learned Hand, regarding
levels of abstraction, applies to software copyrighting. Similar to our description,
control and access to data structures/data types (both encoded in services in our
approach) provide levels of abstraction. Our definition of algorithm primarily
aims at higher precision for control, not for the datatypes and datastructures.
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2.4.1 Contrasting copyright and patent for software

Copyrighting and patenting are complementary, aiming at different levels of
abstraction:

(i) Copyright may protect the expression of an algorithm (an algorhyme
or a program implementing the algorithm) while not protecting the algorithm
proper. Thus, an algorhyme P for algorithm A may infringe a certain copyright
while an (algorithmically equivalent) algorhyme Q for A does not infringe the
same copyright.

(ii) Copyright protection can only be provided for “expressions,” embody-
ments, for which patent protection cannot be obtained (assuming a liberal
patenting regime that tolerates software patents in principle). In [45] a for-
mal criterion to that extent is formulated. In [25] the limitations of copyright
protection against so-called cloning, a particular form of copyright infringement,
are discussed in detail.

(iii) A software patent, assuming a jurisdiction that allows such patents to
be granted at all, may protect an algorithm but cannot be made so specific
that it only protects one or a few specific algorhymes for it. In [35] a patenting
regime is indicated which may be permissive for software patents while avoiding
well-known disadvantages by appropriate limitation of patent scope. Further
detailing [35], in [42] it is proposed that scrutinising usefulness along several
dimensions can help to overcome worries about the eligibility of patent claims,
which otherwise might be considered “too abstract.” These ideas can be incor-
porated in an IPR aware software engineering life-cycle as outlined in [11].

(iv) One notion of algorithm has an abstraction level comparable to invention
in the context of patents. Here we use “invention” without any implicit condition
of novelty, just as “discovery,” in science, or “theorem,” in mathematics. Novelty
of an invention or algorithm can only be assessed at a certain moment in time.
A “new” algorhyme may be novel for a known non-novel algorithm. A new
algorhyme may also turn out to be not novel in the sense of copyright.

(v) Algorithms as defined above are ideal entities. In [31] it is argued that
ideal entities are problematic subjects for the judgements which need to be
made in the context of patents. However, it is suggested that such problems
must not stand in the way of working towards the patenting of such abstract
(in the sense of ideal, rather than in the sense of general) entities. In [32] these
ideas are incorporated into a dedicated logic for reasoning about ideal entities.

(vi) Algorithmic equivalence of algorhymes is more restrictive than being
semantic clones according to [41] which requires functional equivalence only.
Extending the classification of forms of cloning of [41] one may speak of two
algorhymes for the same algorithm as algorithmic clones.

(vii) Patenting algorithms “as such”, that is without a clear claim about
usability, is not supported by mainstream patent regimes. The proposal for the
introduction of research patents as put forward in [44] stems from the back-
ground of chemistry where quite often much research may be required to estab-
lish the usefulness of a new chemical compound. A similar situation may arise
with an algorithm as specified by its functionality combined with characteristics
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of performance, compactness and limited resource utilisation. Usefulness may
be discovered only later. Still allowing patent protection for the algorithm may
be helpful for speeding up the development of software technology.

2.4.2 Algorithm patents: patenting algorithms “as such”

The counterpart of an invention for software is an algorithm. And with copy-
righting as the primary, and well-established, means for IPR protection for
software, it is plausible to contemplate algorithm patents rather than software
patents, thereby removing any risk that the algorithm patent mistakenly pro-
tects the invention at hand at an inadequate level of abstraction. I believe that
this interpretation of software patents, as being better understood as algorithm
patents, complies with the proposals made in [39]. It comes with the concept
of an algorithm that a person who knows and understands the algorithm must
be able, in principle, to implement it. So an enablement criterion for algo-
rithms must require more than mere implementation, for instance: compliance
with a given functional specification, achieving certain performance qualities,
admitting certain correctness guarantees, or achieving certain bounds on code
compactness. Disclosure of enablement must indicate how an implementation
of the suggested quality can be obtained.

For algorithm patents the “as such” aspect is of vital importance. Patenting
algorithms “as such” would do without a proof of utility. An algorithm-as-such
patent, if meaningful at all, may be understood as an instance of a research
patent. Unlike in the case for chemical substances (as discussed in [44]), the
potential economic benefits of the introduction of algorithm-as-such patents are
not easy to grasp.

Assuming that an algorithm patent comes with a convincing demonstration
of usability, then like in the case of chemical compounds the question is whether
a patent granted with one application in mind would also cover, that is expose
infringement by, another application of the same algorithm.

These matters merit further research. Whereas, in the case of algorithm
patents, the notions of novelty and utility for an algorithm admit a convincing
informal interpretation, disclosure of enablement and infringement are more
problematic notions in need of further scrutiny. The following research question
arises, irrespective of whether or not the introduction of algorithm patents is
justified, productive or commercially meaningful.

Problem 2.1. Provide a description of algorithm patents, understood as an
instance of research patents (following [44]), with too narrow coverage prevented
by making use of genus claims that allow some parts of an algorithm to be left
undeterminate (see [30]), including one or more proposals on how these might
be included in major patenting regimes and jurisdictions.

As to the relevance of this question the following may be noticed. There is
widespread scepticism about the justification for patenting algorithms “as such”
(the well-known notion most close to algorithm patent). Now when opposing
algorithm patents on principled grounds, one might not notice the difficulty of
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establishing in plausible detail such a new kind of patents, including a role for
these in an IPR aware software engineering life-cycle, see [11] for that notion,
when first leaving the principled objections aside. Raising principled objections
against implausible proposals, however, is needless and unconvincing.

2.5 Services: servirithms versus servirhymes

For services one may distinguish three aspects: (i) theoretical, logical, math-
ematical or formal specifications of service behaviour, (ii) physical realisations
including descriptions thereof, (iii) (human) cognitions which capture a service
in such a way that an understanding results (by one or more human agents)
which supports the design (by said agents) of instruction sequences making use
of the service.

In line with the terminology of algorithms and algorhymes, I propose to
refer to descriptions under (i) as servirhymes, and to the cognitions under (iii) as
servirithms. Under two one finds physical services and descriptions thereof. The
additional terminology involving servirithms and servirhymes allows conceptual
clarity concerning services. For instance one may speak of service H as “an
array of 10 000 bits” as a servirihtm, which on closer inspection calls for a
plurality of realising servirhymes. Servirithm H and servirhyme H may both
share the same method interface IH so that instruction sequence design, with
the intention to make use of H, can be performed.

2.5.1 Servirhyme faults

Once a service has been specified its realisation may deviate from the specifi-
cation. Clearly services may feature faults and defects as much as instruction
sequences do. However, no fixed format for the description of services exists
and the development of any theory of faults and defects for services requires
additional choices to be made which I will refrain from doing in this paper.

2.6 Issues of terminology: designer algorithms

There is a societal desire to use algorithm with a very wide scope of meaning. For
instance machine learning may create a program able to perform a classification
task. One may wish to speak of a learnt algorithm in that case. I would prefer
to speak of a learnt program instead. Nevertheless when insisting to speak of
a learnt algorithm one will notice that a learnt algorithm does not qualify as
an algorithm in the sense of Definition 2.1 above. A learnt algorithm, as just
mentioned, is not a cognitive entity. It is not an idea. Now one might proceed
in different ways:

(i) speak of a learnt program instead of a learnt algorithm, so that the
requirement that the entity produced by the machine learning application is a
cognitive entity, an idea, need not apply to it.
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(ii) rename algorithm as defined in 2.1 above into “designer algorithm”
thereby admitting that non-designer algorithms exist, and in fact may be pro-
grams.

However, I would expect that working towards patent like IPR for a “learnt
algorithm” is not plausible. From an IPR perspective a learnt algorithm behaves
like a program. The learning algorithm, an implementation of which converts a
set of qualified examples into a learnt program, may well deserve its name, that
is be regarded as a designer algorithm, and may for that reason be susceptible
for IPR beyond copyrighting.

3 Algorhyme: capturing the concept in more
detail

In this section I will first expand on the services on which the definition of an
algorithm is based. In particular I will survey a notion of interface which is
helpful for conceptualisation of the given definitions of program, algorhyme and
algorithm.

I have made the assumption that an algorhyme is comprehensible for some
human readers, where some form of “being skilled in the art” just as for patent
descriptions may be needed to characterise those readers who might actually be
able and willing to acquire said comprehension. Algorhyme may be understood
as an expression possibly in an ad hoc and single purpose extension of some
“known” program notation. However, if the collection of basic actions in (f.m
focus-method notation) is a mere set without any underlying intuitive meaning
then it is hard to imagine how any human being could arrive at comprehension
of an instruction sequence, program, or algorhyme written in terms of those
primitives.

3.1 A service basis

At the basis of interfaces for an instruction sequence stands the library of ser-
vices. The notion of a service is informal, except for the qualitative description
of functionality in terms of method calls, single bit (Boolean) reply to a caller,
and state transformation. The informal aspects of services are critical for human
understanding.

• Name: an alphanumerical string starting with a letter. Here the name is
referred to as Xsv

• A list of method names which together constitute the method interface
Imethod(Xsv) of Xsv. Alternatively a reference to a description of Imethod(Xsv)
can be provided.
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• intended use:

– theoretical work,

– cases studies (with implementation),

– experimental design,

– practice

• category of service indicator:

– RFS (for Reply Function Service),

– stateful service,

– stateful service with external interactive behaviour,

– stateful service with external interactive behaviour given with rele-
vant precision concerning discrete time behaviour,

– description of initial states when serving as a parameter.

• Features and peculiarities

– (description of) parameters, bounds etc, e.g. the maximum size of a
stack etc.,

– indication how names will be tagged with identifiers for individual
instances of a service,

– authorship and IPR aspects, (there may be several sources, authors
and parties entitled to various forms of formal and informal IPR for
a single service); this aspect includes that history of the service,

– computable or non-computable,

– description optimised for: readability, match with certain formats,
verification and testing,

– enhancement extension of earlier services,

– special aspects: probabilistic, use of prospecting, use of lookback.

• familiarity indicator

– math/logical-imported-standard (amply known definitions, available
from a variety of sources)

– math/logical-imported-pseudo standard (imported from a source where
rigorous definitions are given, with an intention to find stable forms
for further use)

– math/logical-imported-incidental (imported from a source where rig-
orous definitions are given though not with an objective of use in
other contexts, but aware of generic significance)

– math/logical-imported-ad hoc (imported from a source where rigor-
ous definitions are given , though aware of the fact that reuse else-
where is unlikely)
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– math/logical-recent (specified in a recent source, not used elsewhere)

– informally outlined (to be made more precise during design)

– informally outlined (not to be detailed any further)

– open (name only)

• Depending on the category a more or less rigorous specification, or refer-
ence to such a specification of the following aspects, when in order:

– reply function: I+
method(Xsv) → {true, false},

– state space,

– initial state,

– reply condition function (θ(s, m)),

– effect function (η(s, m, b)),

– process description of external behaviour

A reader of an instruction sequence can only make sense of that text when aware
of the structure, meaning and details of various services. It will depend from
person to person how much knowledge is needed but together it is quite a lot.

This matter is may be clarified with an indication of the classification of
various services which have been used in research work until now.

1. br stands for bit register (or Boolean register). A collection of 16 methods
with “standard” notation has been proposed in [22]. br is math/logical-
imported-standard,

2. services for stack queue, Turing tape, both with bounded size and with
infinite size” math/logical-imported-pseudo standard (though naming of
methods and precise meaning of these may vary for source to source),

3. Data linkages ([16, 19]) used for the specification of garbage collection and
shedding, math/logical-imported-incidental

4. various Maurer machines used in the theory of processor specification:
math/logical-imported-ad hoc

With an ambition to discuss complex examples, comes the need to have more
complex services in stock. For modelling real time control systems (as specified
in discrete time) comes the need for a library of services able to interact directly
via synchronous or asynchronous communication; such definitions are currently
unavailable. The library of services is not meant to be stable and rigid, rather
it will be updated and upgraded in a steady manner.

At any instant of time a service basis provides authors and readers of instruc-
tion sequences with (i) names for services, names for methods, a (iii) method
interface Imethod(H) for each service, and (iv) adequate information for obtaining
an intuitive understanding of these ingredients.
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3.2 Interfaces: required interfaces and provided interfaces

Names of services as given in the service basis may be unwieldy and for that
reason it is plausible that a project makes use of simplified and local/temporary/
project bound service names.

For a project p, a temporary service naming scheme TSNp is a partial function
from names in a name space to service names. This function may change through
time during a project, at time there is TSNtp. At time t, Dom(TSNtp) constitutes
the collection of service names of relevance for project p, with method inter-
faces as follows: Imethod(V) = Imethod(TSN

t
p(V)). A software engineer in project p

will use names in Dom(TSNtp) all other information regarding the service basis is
considered background information.

For an instruction sequence or a thread to make use of a method call f.m
during a computation it is needed that it is known which service (say H) is
supposed to be accessible via focus f and then m ∈ Imethod(H) is required. Such
information is given by a service family, which is an expression of the form
f1.H1 ⊕ . . .⊕ fn.Hn.

Various notions of interface are relative to a project p at a time, say t. Inter-
faces are defined relative to an focus/service linking. A focus/method interface
is a collection of focus method pairs {f1.m1, f2.m2, ..}. A service family W comes
with a provided interface Iprovided(W) which is a focus/method interface.

Instruction sequences and threads work in the context of a service family
and require that method calls are processed. Service families on the other hand
offer options for processing method calls. An instruction sequence X comes with
its required focus/method interface Irequired(X), and a thread P comes with a
required focus/method interface Irequired(P) as well. If P results from X by thread
extraction, i.e. P = |X|, then Irequired(P) ⊆ Irequired(X).

The various operators are connected via the equations listed in Tables 1
and 2.

3.3 Algorithm reification with a flock of algorhymes

Viewing an algorhyme as a documentation of an algorithm is not the same as
viewing it as a textual or physical form of it. I will speak of reification of an
algorithm when the algorithm takes a material or somehow concrete form. An
appropriate idea of algorithm reification is as follows:

Definition 3.1. (Reificiation of algorithm) A reification of an algorithm con-
sists of a reasonably complete collection (flock) of documenting algorhymes for
it.

A reification of an algorithm is reasonably complete if it provides an adequate
overview of the various existing documenting algorhymes for it. Reasonable
completeness is an informal notion to be assessed by human judgement and for
that reason amenable to disagreement.

Conceptual proposition 3.1. (Algorithms are not programs) It is not the case
(as is often claimed) that an algorithm is a method in the form of a sequence

17



x ∪ ∅interface = x (1)

x ∪ y = y ∪ x (2)

x ∪ (y ∪ z) = (x ∪ y) ∪ z (3)

x ∪ x = x (4)

f.{m} = {f.m} (5)

f.∅method−interface = ∅interface (6)

f.(h ∪ u) = f.h ∪ f.u (7)

H⊕ 0service−family = H (8)

H⊕ L = L⊕ H (9)

H⊕ (K⊕ L) = (H⊕ K)⊕ L (10)

∂ ∅focus−collection
(H) = H (11)

∂ U(0service−family) = 0service−family (12)

∂{f}(f.R) = 0service−family (13)

f 6= g→ ∂{f}(g.R) = g.R (14)

∂{f}(H⊕ K) = ∂{f}(H)⊕ ∂{f}(K) (15)

∂ U∪ V(H) = ∂ U ◦ ∂ V(H) (16)

f.H⊕ f.K = f.0service (17)

Imethod(0service) = ∅method−interface (18)

Imethod(H) = {m | m is a method of H} (19)

Iprovided(0service−family) = ∅interface (20)

Iprovided(f.H) = f.Imethod(H) (21)

Iprovided(f.H⊕ ∂{f}(K)) = Iprovided(f.H) ∪ Iprovided(∂{f}(K)) (22)

Ifocus−collection(0service−family) = ∅focus−collection (23)

Ifocus−collection(f.H) = {f} (24)

Ifocus−collection(V⊕ W) = Ifocus−collection(V) ∪ Ifocus−collection(W)
(25)

x ⊆ y⇐⇒ x ∪ y = y (26)

Table 1: Equations for provided interfaces
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Irequired(S) = ∅interface (27)

Irequired(D) = ∅interface (28)

Irequired(PE f.mD Q) = Irequired(P) ∪ {f.m} ∪ Irequired(Q) (29)

Irequired(!) = ∅interface (30)

Irequired(#n) = Irequired(\#n) = ∅interface (31)

Irequired(f.m) = {f.m} (32)

Irequired(+f.m) = Irequired(−f.m) = {f.m} (33)

Irequired(X; Y) = Irequired(X) ∪ Irequired(Y) (34)

Irequired(X
ω) = Irequired(X) (35)

Table 2: Equations for the required interfaces of threads and instruction se-
quences

of steps, or a mechanism for generating sequences of steps. Like the invention
of glasfiber connection cannot transmit light, only realisations of that invention
can do the real work, it is up to the implementations of algorhymes to be useful
in practice.

Upon being proposed, say in a research paper, an algorithm is documented
by a single algorhyme as given in that paper, i.e. a singleton algorhyme flock. It
is tempting to identify the algorithm with that single algorhyme but doing so is
just as implausible as identifying a theorem with the first proof which has been
found for it. Nevertheless it is valid for the author to claim that an algorithm
has been discovered.

Conceptual proposition 3.2. (Expanding universe of algorithms) The stock
of algorithms, and of corresponding algorhymes is steadily developing and ex-
tending. Stronger program notations allow more complex algorithms to be doc-
umented (by more expressive algorhymes). The development of algorithms can-
not be understood independently from the development of program notations,
and in practice not independently from the development of underlying technol-
ogy. Unavoidably algorhymes will make use of implementations of pre-existing
algorithms as building blocks. Algorithms breed algorithms so to say.

I propose not to maintain a notion of equivalence between algorithms. Algo-
rithms are algorhymes modulo algorithmic equivalence, although this is the case
merely in an informal sense. Maintaining second order algorithmic equivalence
seems to serve no purpose in this approach.
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3.4 Implementation of algorithms

With implementation I will refer to to the result of implementation rather than
to the act of implementing.

Definition 3.2. (Implementing an algorithm) An implementation of an algo-
rithm is an implementation of any of its (up to date) algorhymes. When imple-
menting an algorhyme the work involved may vary from using a compiler, via
compilation by hand, to a more informal design process taking the algorhyme
as a starting point. An implementation is usually a program or an instruction
sequence but it may be a piece of hardware just as well.

An implemented algorithm can be used, by being put into effect. An algo-
rhyme can be used by being copied in whole or in part or after some revision
into an algorhyme for a different algorithm.

Definition 3.3. (Use of an algorithm) There are three ways for an algorithm
to be used:

(i) Operational use of an algorithm: if a system contains an implementation
of an algorhyme that documents an algorithm then the system is said to make
operational use of said algorithm.

(ii) Developmental use of an algorithm: if a programmer implements an
algorithm they are said to make use of it by way of program development.

(iii) Conceptual use of an algorithm: if one or more documenting algorhymes
for an algorithm are used for the design of a new algorithm, or for an ad hoc
designed application program, see below, then conceptual use is made of it.

3.5 Intra-computer science versus extra-computer science

Many if not most algorithms are intrinsic computer science. This means that
a definition in terms of logic, mathematics and theoretical computer science
can be given of the expected behaviour, both in terms of functionality and in
terms of resource utilisation. Such algorithms may be called intra-Computer
Science algorithms (intra-CS algorithms). Other algorithms may import sig-
nificant knowledge or expertise from outside computer science, and are called
extra-Computer Science algorithms (extra-CS algorithms). A chess program
which uses a large database of known chess games by human players imple-
ments an extra-CS algorithm, while a self-learning chess program which creates
all relevant knowledge by itself is an intra-CS program.

The distinction between intra-CS algorithms and extra-CS algorithms is far
from unproblematic. I have the impression that the number of extra-CS algo-
rithms is very much on the rise nowadaways, while at the same time Artificial
Intelligence (AI) techniques steadily deliver new ways in which extra-CS algo-
rithms can be replaced by programs that are found as outputs of implementa-
tions of intra-CS algorithms. AI expands the scope of CS, and human designers
expand the scope of algorithms, and which of the two processes will outrun the
other, if such a thing happens at all, is unknown at the moment.
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Definition 3.4. (Moral neutrality of intra-computer science algorithms.) Intra-
CS algorithms are morally neutral, that is neither good nor bad.

Definition 3.5. (Moral quality of extra-computer science algorithms.) Extra-
CS algorithms may have a moral quality – good or bad.

For instance, a program which maintains a database with data which ought
to be thrown away in some cases may be considered morally problematic.

Definition 3.6. (Ad hoc designs) An ad hoc design is a design which is so
particular for a certain application context that it is rather unlikely that a plu-
rality of alternative documenting algorhymes will ever be made for it, thereby
facilitating the gradual of abstraction (that comes with an increasing number of
available documenting algorhymes) which is needed to bridge the gap between
a design or a program and an algorithm. Ad hoc designs are programs which
hardly transcend beyond their textual appearance.

Ad hoc designs may contain algorhymes as components. The simplest notion
of program component in the setting of instruction sequence theory is given by
so-called polyadic instruction sequences from [17]. Notions of failure, fault and
defect for ad hoc designs are simply inherited from the corresponding notions
of programs.

4 Faults and defects of instruction sequences,
programs, and algorhymes

For an algorhryme various notions of fault can be introduced just as was done for
instruction sequences in [6]. Here I assume that with the notion of an algorhyme
comes, by necessity, an idea of specification or at least of requirements: what
behaviour is supposed to result from running the algorhyme, or rather from
running an implementation of it, an implementation which has been obtained
in a deterministic manner by way of compilation, which is a transformation
which in principle may be carried out by hand.

Definition 4.1. (WB SRT algorhyme fault; abbreviations used for White Box
and for Successful Regression Test.) Let V be a collection of tests which have
been successfully passed by algorhyme X, then X contains a WB SRT fault if a
known change Yc can replace a fragment Y of X and a change Yc for Y in such
a way that:

(i) there is a known input spsf (for Primary Symptomatic Failure) on which
X fails,

(ii) obtaining Xc by replacing Y in X by Yc it is the case that Xc works
correctly on spsf (the problem of the primary symptomatic failure has been re-
solved), and

(iii) Xc passes all tests in V , i.e. Xc successfully completes the regression
test.
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In the above notation if X is improved and the next phase of the development
of X becomes Xc then the regression test set is then extended with spsf , i.e.
V ⇒ V ∪ {spsf }.

A BB (for Black Box) SRT fault is defined similarly but now only the frag-
ment Y is known while of spsf and of Yc only the existence is known, and in
fact many choices for both spsf and of Yc may exist. GB (Grey Box) versions
of SRT faults may provide either input for a primary symptomatic failure, or a
proposed change.

Definition 4.2. (MFJ algorhyme fault) A WB MFJ fault (MFJ for Mili, Frias
and Jaoua) is defined in the same way as a WB SRT fault with the difference
that condition (iii) is changed as follows: Xc produces correct results on all
inputs where X produces correct results.

Definition 4.3. (Laski algorhyme fault) A WB Laski fault is defined in the
same way as a WB MFJ fault with the difference that condition (iii) is changed
as follows: Xc produces correct results on all inputs.

According to these definitions each Laski fault is also an MFJ fault and each
MFJ fault is also an SRT fault. BB and GB versions of MFJ faults and of Laski
faults are defined accordingly. In order to become technically non-trivial these
definitions need to be augmented with size bounds on the size of Y and of Yc.
I will not discuss such matters here, and I refer to [6, 7] for more precision on
sizes of fragments in these definitions.

When programs are taken for instruction sequences, the number of instruc-
tions, LLOC, ( for Logical Lines of Code following the notation of [4]) can be
used for the quantification of the size of fragments, candidate faults, and of can-
didate changes thereof. Many variations of the notion of a fault in an algorhyme
can be imagined, but I hope that these definitions suffice for the work in this
paper.

4.1 Defective algorhymes

An algorithm is defective if it cannot serve as documentation for an algorithm
for which it is intended to play that role while at the same time it cannot be
considered faulty because limited local changes do not suffice to obtained a
proper documentation. An instance of a defective algorhyme is an algorhyme
which claims to document a well-known algorithm, for example in lecture notes,
while it is plainly wrong. I find it hard to imagine an algorhryme which is
defective, though not faulty, and which is still credible, that is not plainly wrong.

4.2 Faulty algorithms?

There is a gap between the notion of a faulty algorithm and a faulty algorhyme.
A faulty algorhyme may, for that reason, not constitute an adequate documen-
tation for an algorhyme. This may be apparent if various other algorhymes
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documenting the same algorithm are known which don’t feature the same de-
fect. It may also be the case that an algorhryme features a defect which sheds
doubt on the algorithm itself: the idea of the algorithm may be flawed in that
there is no indication that a method for solving a certain problem, with certain
quality attributes, has been discovered. This theme is continued in Section 5.

4.3 Under/overperformance defects of programs and
algorhymes

I will include correctness in the notion of performance so a failure is an instance
of bad performance. I will count too slow computation and too high use of
resources also as defective performance. The latter defects only exist in a context
where specifications are given which indicate what must be achieved.

4.3.1 Hash functions, an example

In [20] the hash function SHA-256 is specified by way of an instruction sequence
for its computation. This text may be considered one of many algorhymes for
SHA-256. In connection with faults and defects the following remarks can be
made:

(i) It is certainly possible that there is something wrong with the instruction
sequence given in [20], in the sense that on some inputs a failure occurs with
respect to the official definition of SHA-256. That would be a DOA (Deviation
Of Algorithm) defect of this algorhyme (see also 4.4 below). If it is a local defect
allowing resolution by way of a local change it is a fault of some kind.

(ii) It is also possible that there is something wrong with the SHA-256 algo-
rithm itself. The absence of collisions is a mere act of faith, though supported
by a massive amount of experience. But if it should become possible to easily
generate collision pairs one would start to consider the SHA-algorithm as being
defective by underperforming. Underperfomance understood as the inability to
defeat attempts to create collision pairs.

(iii) It is somewhat unlikely that if an underperformance defect were found
this problem can be resolved by a local replacement of a fragment of the text
in [20]. But in theory the future detection of such a fault cannot be excluded.

4.3.2 Moral underperformance defects in the context of humanoid
autonomous robots

One can imagine a robot, e.g. a humanoid robot RAB(X) equipped with danger-
ous equipment (see [5] for some reflections on that), with AB(X) representing
its artificial brain, essentially made up of a platform for running an instruction
sequence X, which in turn implements an algorhyme A. Now one may assume
that due to a lack of problem solving competence, that is a lack of quality of its
artificial intelligence, AB(X) solves a class C of practical problems in a more
destructive manner than would be achievable with a more appropriate instruc-
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tion sequence X ′ instead of X, that is RAB(X′) performs adequately on tasks in
C. In this case X has a repairable underperformance defect.

If, however, RAB(X) performs badly in comparison to competent human per-
formance concerning tasks of class C and it is unknown how to improveX so that
adequate performance is obtained, then X features a non-repairable underper-
formance defect. With the improvement of software technology a non-repairable
underperformance defect may become a repairable underperformance defect. If
a moral underperformance defect has result from technological progress then re-
pairing the defect, upon that having become doable may be considered a moral
duty for maintenance of X. Failing to resolve the defect may be considered a
moral maintenance flaw with respect to the maintenance of X.

4.3.3 Overperformance defects of algorhymes

An overperformance defect arises if an algorhyme shows a capability which is
problematic as such. From a computer science perspective overperformance is
not a well-known kind of problem, and is not considered to be a big deal for
that reason. However, in principle it may arise. For instance one may imagine
bit sequences which encode a collection of digital images of the same person.
Now an algorhyme or rather an implementation of it, may be able to figure out
from these data aspects of a person’s state of mind, or ethnic background, or
age or whatever matter which is best kept private in principle. In this case the
algorhyme shows objectionable overperformance. In other words the algorhyme
is morally defective by being capable of successfully performing one or more
tasks which should not even be tried to perform – not bay an algorithm and not
by any human agent.

The kind of defect just mentioned is an absolute overperformance defect. In
no context would the very existence of an algorhyme with said performance be
unproblematic.

4.3.4 AI competence overperformance defects: artificial stupidity as
the solution

Moral overperformance defects occur in several forms:
(i) Absolute overperformance as discussed above. The negative moral as-

sessment is hardly bound to AI, and supposedly holds for all agents.
(ii) Competence overperformance defects. Imagine a nuclear missile with

artificial brains which allow it to redirect its targets in flight depending on
its analysis of the political situation. It seems reasonable to assume that this
situation is undesirable by any means. Given the power the embedded computer
has regarding physical control, a system which starts figuring out by itself where
to deliver its payload is unacceptable beyond a certain level of destructive power.
A high level of intelligence may be used to reach the given target with high
precision and reliability, whereas that same intelligence may not be used to
intentionally deviate from the target.
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If too much artificial intelligence is the problem, artificial stupidity is the
solution. The embedded system must demonstrably restrict the reach of its
influence, and of the optimisation it is working out.

(iii) Pseudo competence overperformance defects. A competence overperfor-
mance defect may have been intentionally made invisible with a minor change in
an algorithm which prevents the relatively high competence from taking effect
on the course of events. However, in such a case a minor change of the algo-
rhyme will make it document an algorithm that upon having been implemented
will feature competence overperformance. An occurrence of this case can be
qualified as a pseudo competence overperformance defect.

(iv) Technical overperfomance defects. A technical overperformance defect
arises if a system is able to optimise its behaviour in clever ways, though misses
out on the adequate assessment of the consequences of its actions. The control
intelligence features an overperformance defect. Rather than introducing arti-
ficial stupidity, however, improved assessments of the expected consequences of
various actions may be introduced which allows the system to use its intelligence
and at the same time to find out when certain optimisations go too far.

4.3.5 Moral defects of an algorhyme: who is to blame?

Suppose that one agrees that a specific algorhyme A features a moral defect.
Now if human agent P knows about the moral defect and uses an implemen-
tation PA of A in critical circumstances, that is conditions under which the
overperformance under consideration is likely or merely able of causing a wrong
outcome, then A acts immorally by making use of a robot that has PA embed-
ded in its software. It is less clear to what extent the designer of A is to blame.
I hold that it is conceivable that the designer of X has acted in a morally ob-
jectionable manner simply by designing X. How and when that is the case is
non-obv ious and merits further research.

4.3.6 Moral overperformance defects cannot be faults at the same
time

Suppose that a moral overperformance defect is observed for algorhyme X.
Then it is plausible that a minor modification “breaks the code” and leads to
an algorhyme without any significant performance let alone overperformance.
Even if the residual performance is such that the change involved might be seen
as a solution of the moral overperformance defect it is not the case that the
resulting algorhyme is without any moral overperformance defect. Indeed it is
merely one minor change, in a backward direction, away from an algorhyme
that features a moral overperformance defect and for that reason the algorhyme
shows this defect itself by definition as a case of pseudo overperfpormance defect.

25



4.4 DOA defects for algorhymes

Suppose that X is an algorhyme in a flock F of n+1 algorhymes for an algorithm
A with n >> 1. Now it may be the case that on closer inspection except X
all other algorhymes in F do qualify as equivalent documentations for the same
algorithm, while X is an outlier which, although it has the same functionality,
that is semantics, as the other elements of F , it can not reasonably count as
a documentation for “the same method for computing a certain functionality”
as the other algorhymes do. Moreover assume that a fragment Y is found in
X, together with a change Yc so that upon replacing Y by Yc in X a credible
element of F results which can be positively assessed as documenting the same
computational method as the other elements of F do. Now a defect in X has
been found. This defect is a deviation of algorithm (DOA) defect.

5 Failures, faults, and defects for algorithms

The initial idea for a defect of an algorithm is as follows;

Definition 5.1. (Algorithm defect.) If each of the algorhymes documenting
algorithm A contains the same or a very similar defect then that defect is also
considered a defect of the algorithm.

In practice the above definition of an algorithm is unworkable because quan-
tification over all documenting algorhymes is undoable. By working with algo-
rithm reifications, that is with finite algorhyme flocks more workable definition
of fault and defect can be obtained.

5.1 Faults of algorithm reifications

Algorithms as defined in 2.1 above are not sufficiently concrete to contain faults.
There is no plausible notion of component or fragment of an algorithm and
by consequence there is no plausible notion of replacement of fragments of an
algorithm. However, when considering reifications of algorithms by flocks of
algorhymes the matter changes.

Let FA be a flock of algorhymes for algorithm A, and assume that none
of the algorhymes in FA features a DOA defect. Now it is quite possible that
none of the algorhymes in the flock complies with the requirements R which are
supposed to be met by these. Non-compliance with requirements may take the
form of semantic mismatch failures or it may take the form of overall system
failures. This distinction was mentioned above in 1.2.4.

Now it is conceivable that in a systematic way each algorhyme X in FA can
be upgraded by replacing a fragment in it so as to be improved in such a way that
the failure withe respect to requirements F is resolved. If these replacements are
somehow similar, that is if a replacement for one of the algorhymes is known,
replacements for the others can be derived from that, one may speak of a fault
in each of the algorhymes in the flock which at the same time counts as a fault
in the algorithm which is reified by the flock.
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The mere option for a uniform, for all algorhymes in the flock, and pairwise
mutually comparable, inter-derivable, improvement which resolves a failure does
witness a fault. It is plausible to apply notions like SRT fault, MFJ fault, and
Laski fault to algorithm reifications.

In the same way a notion of fault may sometimes be lifted from algorhymes to
algorithm reifications, various notions of defect may be lifted from algorhymes
to algorithms. Thus algorithm reifications may feature various moral defects
including moral overperformance defects and moral underperformance defects.

5.2 (Im)plausibility of faults of algorithm reifications

The very presence of a substantial flock of algorhymes for an algorithm indicates
that the algorithm is successful in practice. At the same time it indicates that
it somehow works and for that reason is not faulty.

In the area of cryptology algorithms are used which have become widespread
because of success, and for which by consequence a significant family of docu-
menting algorhymes has evolved which together constitutes a reification.

At any time however, it may turn out that the algorithm is broken, for
instance in such a manner that the keys it computes can be deciphered, and is
not considered safe any more so that from that moment onwards the algorithm
is considered defective with respect to its original objectives.

Now my observation would be that in such cases it is unlikely that the defect
amounts to a fault, that is a defect with an easy solution via a small textual
change. Claiming the necessity of a major redesign of the algorithm and its
plurality of documenting algorhymes constitutes more plausible diagnosis of the
situation.

5.3 Algorithms for embedded systems

I imagine a platform design P equipped with an Operating System (OS) able
to control all its physical functions. The OS is supposed to be generic, that
is it is independent of the intended use and is capable of being installed on
many different platform designs. Instances of P , that is physical platforms SP

i ,
called P -systems, of which a plurality may be around at some instance in time,
are to be loaded with control software consisting of a number of applications
X1, . . . , Xn running as a multithread by way of strategic interleaving (see for
example [13, 14, 15]), in addition to a number of utilities Xn+1, . . . , Xn+m. I will

write SP
i ( ~X) for the system with these particular software components loaded,

and active in the manner just specified.
The main source of variation between P -systems lies in the software which

is in control of their actions. I will formulate a number of assumptions about
the software.

Assumption 5.1. (InSeq design in the lead.) X1, . . . , Xn are instruction se-
quences (inSeq’s), written in a notation Lis which have been constructed on the
basis of designs Dj denoted in design notation Ldesign. In some cases programs
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pj in a program notation Lprog constitute a stage between Dj and Xj and Xj

has been constructed by as Xj = Cprog2is(pj), with Cprog2is a generic compiler
written in notation Lcomp which has been used for other projects already, which
can be put into effect on remote host H from where outcomes can be distributed
over various platforms. The design for utilities Dn+1, . . . , Dn+m has also been
generic, and so was the construction of the corresponding instruction sequences
Xj, and the latter have been used before, and are being used, for other projects.

Assumption 5.2. (An algorithm as a point of departure.) For j ∈ {1, . . . , n}
the design Dj has been developed on the basis of an algorithm Aj, which itself
is given as a flock of kA, supposedly pairwise algorithmically equivalent, algo-
rhymes XA

j,1, . . . X
A
j,kA

. These algorhymes have different backgrounds including
open scientific literature.

Assumption 5.3. (Context aware design of peripheral drivers.) For all j ∈
{1, . . . , n} the design Dj has been developed in context, that is aware of the
intended use of the platforms for which the corresponding Xj are in part or
even entirely in control.

I will assume that various human agents, all included in a large group
Hagents, work with and for the various systems and platforms. Matters of
knowledge and judgement are to be viewed from the perspective of a human
agent or of a group of agents represented by one of its members.

Assumption 5.4. (Transparent design histories.) For each artefact R a design
and construction history is known or partially known to an agent B For instance

the construction of Xi from Di has been carried out by team T
c[t1,t2]
i in the time

span [t1, t2], while maintenance is performed by team Tm
i . Members of teams for

design, construction and maintenance are called engineers. For each team T the
composition comp(T, t) at time t is known as a list of persons with identifying
data plus a list of zero or more, perhaps an unknown number, of pointers to
unknown/anonymous members of the team.

Assumption 5.5. (Active maintenance assumption.) A team of human op-
erators exercises some form of control over the population of P platforms in
existence at a given moment in time. Depending on permissions, the setting of
which is regulated by an internal hierarchy among the operators, various oper-
ators are able to add, delete, replace, and upgrade application programs as well
as utility programs both to the entire class of P -platforms in operation and to
individual platforms among these.

By combining the listed assumption a workflow model is obtained which, in
principle, allows to attribute the occurrence of various moral and other faults in
inSeq’s, algorhymes and algorithms to activities made by individual engineers
or by teams of engineers. For faults which must not occur by any means,
facilitating such attribution is essential.

For moral faults we are left with the question: In connection with the notion
of algorithm faultm as well as design fault, algorhyme fault, program fault, and

28



instruction sequence fault, in the context of embedded systems I wish to mention
the following considerations:

1. A typical software engineering task involves the development of a new
component say Xn+1 which will add to the control of the system, where
it is assumed that without the new component the system already has a
reasonably well-understood working.

2. A new component must satisfy COSC requirements (for Contribution Of
Software Component) in the terminology of [6].

3. COSC requirements are likely to be extra-computer science requirements
(see 3.5 above). Moreover COSC requirements are likely to be overall
system requirements rather than semantic requirements (see 1.2.4 above).

4. Under the above conditions notions of failure, fault, and defect are mean-
ingful for a new component Xn+1.

5. Following the analysis of [9, 10] the MCAS algorithm may be modelled as
an additional thread, comprising an implementation of the MCAS algo-
rithm, to a mature multi-threading system. Now the suggestion of [10] is
that the implementation of MCAS in the Boeing 737 Max system has not
been faulty, and shows no defect for the very reason that no resolution of
the failure, which appeared with both deadly crashes, can be achieved by
simply replacing a fragment of the instruction sequences for an implemen-
tation of Xn+1, in particular not by simply making the program look at
two angle of attack sensors instead of inspecting just one.

6. Instead, so it is argued in [10] it is conceivable that during the design of
the MCAS software a so-called software process flaw has occurred so that
it has not been noticed that given the available sensors and computing
infrastructure, in a Boeing 737 Max at that moment, no adequate im-
plementation of the COSC requirements could be found, which according
to [10] is a consistent and even plausible assumption.

6 Concluding remarks

This paper proposes a novel definition of algorithms supported by the novel
notion of an algorhyme. The definition is an elaboration into a more rigorous
form of the definition of an algorithm given by Jeff Edmonds in his textbook
“How to think about algorithms” [27] which reads as follows:

An algorithm is a step-by-step procedure which, starting with an
input instance, produces a suitable output. It is described at the
level of detail and abstraction best suited to the human audience
that must understand it. In contrast code is an implementation of
an algorithm that can be executed by a computer. Pseudocode lies
between these two.
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In [21] and attempt is made to provide a definition of algorithmic equivalence
under quite restrictive conditions. As mentioned in that paper and in various
references cited in there, it is questionable that such an attempt can succeed.
Algorithmic equivalence as defined in [21] is unable to abstract from details
which human readers upon further reflection consider to be of marginal impor-
tance only. “True algorithmic equivalence”, that is in an intuitive and informal
sense allows to identify, that is consider equivalent, more instruction sequences
than is done with the definition in [21].

Secondly it is argued that in practice an algorithm may be thought of, reified,
as a flock, that is a finite collection, of algorhymes. Looking at an algorithm
that way allows to define so-called DOA, deviation of algorithm defects in an
algorhyme, and more importantly allows to determine a notion of fault for an
algorithm.

Thirdly I propose how to conceptualize the notion of a moral defect and a
moral fault for programs, algorhymes and algorithms. I expect that the avail-
ability of such notions can to the ongoing debate on moral aspects of so-called
“killer robots,” as well as being helpful for advancing the analysis of moral
aspects of robots in care and in various forms of entertainment.
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