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Abstract

The quaternions extend the complex numbers and are used in physics
and engineering. Division of quaternions by zero is not defined, which
limits physical theories and engineering applications. We now introduce
transquaternions, which totalise the arithmetical operations of quaternion
addition, subtraction, multiplication, and both left and right division. In
particular, division of quaternions by zero is allowed.

The transquaternions are homeomorphic to the unit hypersphere or
glome, including its interior, together with an isolated point. The 4D
interior of the hypersphere is made up of the ordinary quaternions. The
3D surface of the hypersphere is made up of the infinite transquaternions,
which are produced by dividing non-zero quaternions by zero. The isolated
point, that lies outside the 4D space containing the hypersphere, is the
transquaternion nullity, which is produced by dividing zero by zero.

Transquaternions are a separable compact complete metric topological
space.

1 Introduction

Transmathematics is a program that seeks to totalise the usual number
systems by allowing division by zero. Thus the real numbers are totalised
by the transreal numbers [1] [6] and the complex numbers are totalised by
the transcomplex numbers [3] [5]. We now introduce the transquaternions
as a totalisation of the quaternions. Our method is to replicate the con-
struction given in [3] but to replace complex numbers with quaternions.
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That such a substitution is possible, bodes well for a general totalising
construction for Cayley-Dickson algebras.

After the technical work of the paper, we discuss possibilities for future
work in both mathematics and physics. We conclude with a statement of
the most important original results of this paper.

2 Quaternions

Quaternions are a 4-dimensional associative division algebra over the real
numbers that contains complex numbers as a subalgebra. The set of
quaternions, H, can be written as H = {a + bi + cj + dk; a, b, c, d ∈ R}
where i, j and k are quaternions such that i2 = j2 = k2 = ijk = −1.

The multiplication of a quaternion and a real number is commutative,
that is for every quaternion x and every real number α it follows that
xα = αx. Multiplication by real numbers is distributive over quaternion
addition, that is for every quaternion x and y and every real number α it
follows that α(x+ y) = αx+ αy.

For every non-zero quaternion y there is a quaternion z such that
yz = zy = 1. Such a number z, called the multiplicative inverse of y, is

denoted by y−1 or
1

y
. So the multiplications xy−1 and y−1x are well de-

fined for every quaternion x and every non-zero quaternion y. Quaternion
multiplication is not commutative in general, there are quaternions x and
non-zero quaternions y where xy−1 6= y−1x. Because of this there are right
divisions and left divisions, respectively, x/y := xy−1 and y\x := y−1x
for every quaternion x and every non-zero quaternion y. Since multipli-
cation between a quaternion and a real number is commutative, when the
dividend or the divisor is a real number, the right division and the left

division have the same value. Because of this we define
x

y
:= x/y = y\x

for every quaternion x and y with y 6= 0 where either x or y (or both) are
real numbers.

The quaternion conjugate, defined as x := a − bi − cj − dk for all
x = a+ bi+ cj + dk, satisfies, among others, the properties:

a) x = x,

b) x+ y = x+ y,

c) −y = −y,

d) x− y = x− y,

e) xy = y x,

f) y−1 = y−1 if y 6= 0 and

g) x/y = y\x and y\x = x/y if y 6= 0

for all quaternions x and y.

The quaternion norm, defined as |x| :=
√
a2 + b2 + c2 + d2 for all

x = a+ bi+ cj + dk, satisfies, among others, the properties:

a) |x| is real number,

b) |x| = 0 if and only if x = 0,
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c) |x|2 = xx,

d) |x| = |x|,
e) |xy| = |x||y|,
f) |y−1| = |y|−1 if y 6= 0,

g) |x/y| = |x|/|y| = |y|\|x| = |y\x| if y 6= 0 and

h) |x+ y| ≤ |x|+ |y|
for all quaternions x and y.

For every non-zero quaternion x there are unique θ, φ ∈ [0, π] and ψ ∈
(−π, π] such that x = |x|(cos(θ) + i sin(θ) cos(φ) + j sin(θ) sin(φ) cos(ψ) +
k sin(θ) sin(φ) sin(ψ)).

Notice that | cos(θ) + i sin(θ) cos(φ) + j sin(θ) sin(φ) cos(ψ) +
k sin(θ) sin(φ) sin(ψ)| = 1 for all θ, φ ∈ [0, π] and ψ ∈ (−π, π].

3 Construction of the Transquaternions

Definition 1. Let T :=
{

(x, y); x ∈ H, y ∈ {0, 1}
}

. Given (x, y), (w, z) ∈
T , we say that (x, y) ∼ (w, z), that is, (x, y) is equivalent to (w, z), with
respect to ∼, if and only if there is a positive α ∈ R such that x = αw
and y = αz.

For each (x, y) ∈ T , let us write the equivalence class of (x, y) as [x, y],
that is, [x, y] :=

{
(w, z) ∈ T ; (w, z) ∼ (x, y)

}
. Let us call each element of

T/∼, the quotient set of T with respect to ∼, a transquaternion and let
us write this set as HT , that is, HT := T/∼.

Proposition 2. HT is well defined. That is, ∼ is, in fact, an equivalence
relation in T .

Proof. Let (x, y), (w, z), (u, v) ∈ T such that (x, y) ∼ (w, z) and (w, z) ∼
(u, v). Then there are positive α, β ∈ R such that x = αw, y = αz,
w = βu and z = βv.

Firstly since x = 1 × x and y = 1 × y it follows that (x, y) ∼ (x, y),
whence ∼ is reflexive.

Secondly since w =
1

α
x and z =

1

α
y it follows that (w, z) ∼ (x, y),

whence ∼ is symmetric.
Thirdly since x = (αβ)u and y = (αβ)v it follows that (x, y) ∼ (u, v),

whence ∼ is transitive.

Proposition 3. HT =
{

[u, 1]; u ∈ H
}
∪
{

[u, 0]; u ∈ H, |u| = 1
}
∪
{

[0, 0]
}
.

Furthermore
{

[u, 1]; u ∈ H
}

and
{

[u, 0]; u ∈ H, |u| = 1
}

and
{

[0, 0]
}

are
pairwise disjoint sets; and if x 6= w then [x, 1] 6= [w, 1]; and if |x| = 1 and
|w| = 1 and x 6= w then [x, 0] 6= [w, 0].

Proof. Let [x, y] ∈ HT be arbitrary. Either y = 1 or y = 0.
If y = 1 then [x, y] ∈

{
[u, 1]; u ∈ H

}
.

If y = 0 then either x = 0 implying [x, y] = [0, 0] or x 6= 0 implying

x = |x| x|x| and 0 = |x| × 0 and

∣∣∣∣ x|x|
∣∣∣∣ = 1, whence [x, y] =

[
x

|x| , 0
]
∈{

[u, 0]; u ∈ H, |u| = 1
}

.

3



Definition 4. For all [x, y], [w, z] ∈ HT we define:

a) (addition) If [x, y] , [w, z] ∈
{

[u, 0]; u ∈ H, |u| = 1
}

then [x, y] +

[w, z] :=

[
x

|x| +
w

|w| , 0
]

otherwise [x, y] + [w, z] := [xz + wy, yz].

b) (multiplication) [x, y]× [w, z] := [xw, yz].

c) (opposite) −[x, y] := [−x, y].

d) (reciprocal) If x = 0 then [x, y]−1 := [y, x] otherwise [x, y]−1 :=[ y
x
, 1
]
.

e) (subtraction) [x, y]− [w, z] := [x, y] +
(
− [w, z]

)
.

f) (right division) [x, y]/[w, z] := [x, y]× [w, z]−1.

g) (left division) [w, z]\[x, y] := [w, z]−1 × [x, y].

Notice that there is no ambiguity in the division
y

x
in the item d

because y is a real number. The fraction
y

x
denotes both y/x and x\y,

since y/x = x\y because y is a real number.
We are conscious that we abuse notation when we reuse the sym-

bols for quaternion arithmetical operations to define the transquaternion
arithmetical operations. However, we emphasise that this is not a problem
because the context distinguishes the set to which the symbols refer. For
example when we say [x, y] + [w, z] = [wy+xz, yz] it is clear that the sign
“+” on the left hand side of the equality refers to addition in HT while
the sign “+” on the right hand side of the equality refers to addition in
H. Moreover, as will be seen in Theorem 7 and Remark 8, in a suitable
sense, H is a subset of HT and when the operations in HT are restricted
to H they coincide with the usual operations of H.

Proposition 5. The operations +, ×, −, −1, / and \ are well defined.
That is, [x, y] + [w, z], [x, y] × [w, z], −[w, z], [x, y] − [w, z], [w, z]−1,
[x, y]/[w, z] and [w, z]\[x, y] are independent of the choice of the repre-
sentatives of the classes [x, y] and [w, z].

Proof. Let [x, y], [w, z] ∈ HT , (x′, y′) ∈ [x, y] and (w′, z′) ∈ [w, z]. We
have that there are positive α, β ∈ R such that x = αx′, y = αy′, w = βw′

and z = βz′.
If [x, y] , [w, z] ∈

{
[u, 0]; u ∈ H, |u| = 1

}
, then x 6= 0, w 6= 0, y = 0

and z = 0, whence x′ 6= 0, w′ 6= 0, y′ = 0, z′ = 0, |x| = α|x′| and

|w| = β|w′|. Thus
x

|x| =
αx′

α|x′| =
x′

|x′| and
w

|w| =
βw′

β|w′| =
w′

|w′| , whence(
x

|x| +
w

|w| , 0
)

=

(
x′

|x′| +
w′

|w′| , 0
)

. Otherwise xz + wy = αx′βz′ +

βw′αy′ = (αβ)(x′z′ + w′y′) and yz = αy′βz′ = (αβ)(y′z′), whence
(xz + wy, yz) ∼ (x′z′ + w′y′, y′z′). Hence, in both cases, [x, y] + [w, z] =
[x′, y′] + [w′, z′]. Therefore addition is well defined.

Since xw = αx′βw′ = (αβ)(x′w′) and yz = αy′βz′ = (αβ)(y′z′) it
follows that (xw, yz) ∼ (x′w′, y′z′), whence [x, y]×[w, z] = [x′, y′]×[w′, z′].
Therefore multiplication is well defined.
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Since −w = −(βw′) = β(−w′) and z = βz′ it follows that (−w, z) ∼
(−w′, z′), whence −[w, z] = −[w′, z′]. Therefore the opposite is well de-
fined.

If w = 0 then w′ = 0 and w = 0 = β × 0 = βw′ and z = βz′,
whence (z, w) ∼ (z′, w′) and, thereby, [w, z]−1 = [w′, z′]−1. If w 6= 0 then
z

w
=

βz′

βw′
=

z′

w′
, whence

( z
w
, 1
)

=

(
z′

w′
, 1

)
. Therefore the reciprocal is

well defined.
Notice that subtraction, right division and left division are well defined

by consequence of the four previous operations.

Theorem 6. There are no exceptions in any of the transquaternion arith-
metical operations: addition, opposite, subtraction, multiplication, recip-
rocal, right division and left division. That is, for all [x, y], [w, z] ∈ HT it
follows that [x, y] + [w, z], −[w, z], [x, y] − [w, z], [x, y] × [w, z], [w, z]−1,
[x, y]/[w, z] and [w, z]\[x, y] are well defined elements of HT .

Proof. The result is immediate from the definitions of the transquater-
nion arithmetical operations (Definition 4).

Theorem 7. The set H :=
{

[u, 1]; u ∈ H
}

is a 4-dimensional associative
division algebra over the real numbers.

Proof. Firstly of all notice that [x, 1]+[y, 1] = [x+y, 1] and [x, 1]×[y, 1] =
[xy, 1] for any x, y ∈ H.

Denote R :=
{

[α, 1]; α ∈ R
}

and define for all [α, 1], [β, 1] ∈ R: [α, 1] ≤
[β, 1] if and only if α ≤ β. Since the function π : R → R, where π(α) =
[α, 1] for all α ∈ R, is bijective and

• π(α) + π(β) = π(α+ β),

• π(α)× π(β) = π(αβ) and

• π(α) ≤ π(β) if and only if α ≤ β
for all α, β ∈ R and R is a complete ordered field it follows that R is a
complete ordered field and π is an isomorphism of ordered fields.

Since the function π : H → H, where π(x) = [x, 1] for all x ∈ H, is
bijective and

• π(x) + π(w) = π(x+ w) and

• π(x)× π(w) = π(xw)

for all x,w ∈ H and H is a 4-dimensional associative division algebra over
R it follows that H is a 4-dimensional associative division algebra over the
field R. Therefore, since R is R up to isomorphism, H is a 4-dimensional
associative division algebra over the real numbers.

Remark 8. Notice that since π is an isomorphism of associative division
algebras between H and H, we may say that H is a “copy” of H in HT .
Therefore we may allow an abuse of language and notation: each [x, 1] ∈ H
will be written, merely, as x, and H will be called the set of quaternions.
In this sense we may say that

H ⊂ HT .
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Furthermore there is now no ambiguity in the use of the arithmetical sym-
bols +, ×, −, −1, / and \ so we can consider that all arithmetical symbols
refer to transquaternion arithmetical operations, since the isomorphism π
ensures that when they are applied to quaternions, their results coincide
with the results of their homologous quaternion arithmetical operations.

4 Transquaternions as Fractions

We already know that x/y = y\x for every quaternion x and y with y 6= 0
where either x ∈ R or y ∈ R. Theorem 9 says that the above sentence is
still true if we replace the word “quaternion” by the word “transquater-
nion”. Furthermore, from the Theorem 6 there is no exception in the right
division and in the left division. In particular every transquaternion can
be divided by zero. So, Theorem 9 also allows us to remove the restriction
about y in the above sentence.

Theorem 9. Let a, b ∈ HT . If a ∈ R or b ∈ R then a/b = b\a.

Proof. Let a, b ∈ HT .
If a ∈ R then a = [a, 1]. There are w ∈ H and z ∈ {0, 1} such that b =

[w, z]. If w 6= 0 then
z

w
∈ H whence, since a ∈ R, a

z

w
=

z

w
a and, there-

fore, a/b = [a, 1]/[w, z] = [a, 1]×[w, z]−1 = [a, 1]×
[ z
w
, 1
]

=
[
a
z

w
, 1× 1

]
=[ z

w
a, 1× 1

]
=
[ z
w
, 1
]
× [a, 1] = [w, z]−1 × [a, 1] = [w, z]\[a, 1] = b\a. If

w = 0 then a/b = [a, 1]/[w, z] = [a, 1] × [w, z]−1 = [a, 1] × [0, z]−1 =
[a, 1]×[z, 0] = [a×z, 1×0] = [z×a, 0×1] = [z, 0]×[a, 1] = [0, z]−1×[a, 1] =
[w, z]−1 × [a, 1] = [w, z]\[a, 1] = b\a.

If b ∈ R then b = [b, 1]. There are x ∈ H and y ∈ {0, 1} such that

a = [x, y]. If b 6= 0 then
1

b
∈ R whence x

1

b
=

1

b
x and, therefore,

a/b = [x, y]/[b, 1] = [x, y] × [b, 1]−1 = [x, y] ×
[

1

b
, 1

]
=

[
x

1

b
, y × 1

]
=[

1

b
x, 1× y

]
=

[
1

b
, 1

]
× [x, y] = [b, 1]−1 × [x, y] = [b, 1]\[x, y] = b\a. If

b = 0 then a/b = a/0 = [x, y]/[0, 1] = [x, y] × [0, 1]−1 = [x, y] × [1, 0] =
[x×1, y×0] = [1×x, 0×y] = [1, 0]×[x, y] = [0, 1]−1×[x, y] = [0, 1]\[x, y] =
0\a = b\a.

Remark 10. Theorem 9 allows us to define
a

b
:= a/b = b\a for every

transquaternions a and b where either a or b (or both) is a real number.

Theorem 11. Every transquaternion can be written as a fraction be-
tween quaternions. More specifically, for all a ∈ HT there are u ∈ H and

v ∈ {0, 1} such that a =
u

v
.

Notice that the division in the fraction
u

v
is the transquaternion divi-

sion (Definition 4). That is, u and v are quaternions but the division in

the fraction
u

v
is the transquaternion division. This is not a problem

since all quaternions are transquaternions so that transquaternion division
applies to quaternions.
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Proof. Let a ∈ HT . There are u ∈ H and v ∈ {0, 1} such that a = [u, v].

If v = 0 then [v, 1]−1 = [1, v] otherwise [v, 1]−1 =

[
1

v
, 1

]
and v = 1

whence [v, 1]−1 =

[
1

v
, 1

]
=

[
1

1
, 1

]
= [1, 1] = [1, v]. That is, in any

case, [v, 1]−1 = [1, v]. Thus
u

v
= u/v = [u, 1]/[v, 1] = [u, 1] × [v, 1]−1 =

[u, 1]× [1, v] = [u× 1, 1× v] = [u, v] = a.

Remark 12. Because of Theorem 11, the transquaternion equivalence
(Definition 1) and arithmetical operations (Definition 4) can be performed
as operations on fractions. Let x,w ∈ H and y, z ∈ {0, 1}.

a)
x

y
=
w

z
if and only if there is a positive α ∈ R such that x = αw

and y = αz.

b) If x 6= 0, w 6= 0, y = 0 and z = 0 then
x

y
+
w

z
=

x
|x| + w

|w|

0
.

Otherwise
x

y
+
w

z
=
xz + wy

yz
.

c) −w
z

=
−w
z
.

d)
x

y
− w

z
=
x

y
+
−w
z
.

e)
x

y
× w

z
=
xw

yz
.

f) If w = 0 then
(w
z

)−1

=
z

w
.

Otherwise,
(w
z

)−1

=
z
w

1
.

g)

(
x

y

)
/
(w
z

)
=
x

y
×
(w
z

)−1

.

h)
(w
z

)
\
(
x

y

)
=
(w
z

)−1

× x

y
.

For practical purposes it is not necessary to know that transquater-
nions are equivalence classes of ordered pairs of quaternions. Section 3
is an explicit and rigorous construction of the new numbers, transquater-
nions, from the already known numbers, quaternions, in order to prove
the consistency of the arithmetic of transquaternions. However, for prac-
tical purposes, it is enough to know that transquaternions are fractions of
quaternions (Theorem 11) and that the arithmetic of fractions, expressed
in (Remark 12), holds.

Theorem 13. It follows that

HT = {x/y; x, y ∈ H} = {x\y; x, y ∈ H} .

Proof. By Theorem 11, HT ⊂ {x/y; x, y ∈ H}. Let x and y be arbitrary
quaternions. Since H ⊂ HT it follows that x, y ∈ HT , whence, by Theorem
6, x/y ∈ HT . As x and y were taken arbitrarily in H it follows that
{x/y; x, y ∈ H} ⊂ HT . Therefore HT = {x/y; x, y ∈ H}.

Similarly, we have that HT = {x\y; x, y ∈ H} .
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5 Notable Subsets of Transquaternions

Theorem 14. The transcomplex numbers are a subset of the transquater-
nions,

CT ⊂ HT ,

and every transquaternion arithmetical operation coincides with its ho-
mologous transcomplex one when applied to transcomplex numbers, where
that right and left divisions coincide with each other in transcomplex num-
bers.

Proof. In [5] we see that CT =

{
x

y
; x, y ∈ C

}
. Since C ⊂ H it follows

that

{
x

y
; x, y ∈ C

}
⊂ {x/y; x, y ∈ H}. Therefore CT =

{
x

y
; x, y ∈ C

}
⊂

{x/y; x, y ∈ H} = HT .
Since the definitions of the transquaternion arithmetical operations

are identical to the definitions of the corresponding transcomplex opera-
tions ([3], Definition 2), where the right and left divisions coincide with
each other in transcomplex numbers, it follows that the transquaternion
arithmetical operations coincide with their homologous transcomplex ones
when applied to transcomplex numbers.

Theorem 15. The transreal numbers are a subset of the transquater-
nions, RT ⊂ HT , and every transquaternion arithmetical operation coin-
cide with its homologous transreal one when applied to transreal numbers.

Proof. In [3] we see that RT ⊂ CT . Thus RT ⊂ CT ⊂ HT , whence
RT ⊂ HT .

Since every transquaternion arithmetical operation coincides with its
homologous transcomplex one when applied to transcomplex numbers
and all transreal numbers are transcomplex numbers, it follows that ev-
ery transquaternion arithmetical operation coincides with its homologous
transcomplex one when applied to transreal numbers. But the transcom-
plex arithmetical operations are the transreal ones when applied to tran-
sreal numbers. Because of this every transquaternion arithmetical opera-
tion coincide with its homologous transreal one when applied to transreal
numbers.

The rectangle ABCD represents the set of real numbers, R.
The rectangle GBCH represents the set of hyperreal numbers, ∗R.
The rectangle AIJD represents the set of complex numbers, C.
The rectangle EFCD represents the set of transreal numbers, RT .
The rectangle AILK represents the set of quaternions, H.
The rectangle EMJD represents the set of transcomplex numbers, CT .
The rectangle ENOK represents the set of transquaternions, HT .

Despite the fact that the hyperreal numbers are not part of the subject
of the present paper, we mention them in Figure 1 to emphasise that
the strictly hyperreal numbers have nothing in common with the strict
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Figure 1: Notable subsets of the transquaternions, together with
the hyperreals.

transquaternions. In particular, none of the hyperreal infinite numbers is
an infinite transquaternion and none of the infinite transquaternions is a
hyperreal infinite number.

Definition 16. Now let us define infinity and nullity, respectively, by
∞ := [1, 0] and Φ := [0, 0].

Theorem 17. Transquaternion infinity coincides with transcomplex in-
finity and transquaternion nullity coincides with transcomplex nullity.

Proof. The results follows from the fact that the definition of tran-
squaternion infinity and transquaternion nullity are, respectively, identical
to the definition of transcomplex infinity and transcomplex nullity [3].

Remark 18. Because of Theorem 17 there is no ambiguity in writing the
number ∞ or the number Φ. It does not matter whether ∞ denotes the
transreal infinity or transcomplex infinity or transquaternion infinity since
these three numbers are the same. Likewise it does not matter whether Φ
denotes the transreal nullity or transcomplex nullity or transquaternion
nullity since these three numbers are the same.

Remark 19. [0,∞] denotes the interval of transreal numbers {x ∈ RT ; 0 ≤
x ≤ ∞} [6].

Definition 20. Henceforth, for each θ, φ ∈ [0, π] and ψ ∈ (−π, π], we
denote A(θ, φ, ψ) := cos(θ) + i sin(θ) cos(φ) + j sin(θ) sin(φ) cos(ψ) +
k sin(θ) sin(φ) sin(ψ).

Theorem 21. It follows that

HT = {rA(θ, φ, ψ); r ∈ [0,∞] ∪ {Φ}, θ, φ ∈ [0, π], ψ ∈ (−π, π]}

and
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a) 0A(θ1, φ1, ψ1) = 0A(θ2, φ2, ψ2) for all θ1, θ2, φ1, φ2 ∈ [0, π] and
ψ1, ψ2 ∈ (−π, π],

b) ΦA(θ1, φ1, ψ1) = ΦA(θ2, φ2, ψ2) for all θ1, θ2, φ1, φ2 ∈ [0, π] and
ψ1, ψ2 ∈ (−π, π],

c) ∞A(θ1, φ1, ψ1) =∞A(θ2, φ2, ψ2) if and only if θ1 = θ2, φ1 = φ2 and
ψ1 = ψ2 and

d) rA(θ1, φ1, ψ1) = rA(θ2, φ2, ψ2) if and only if θ1 = θ2, φ1 = φ2 and
ψ1 = ψ2, when r ∈ (0,∞).

Proof. Let z ∈ HT . By Proposition 3, HT =
{

[u, 1]; u ∈ H
}
∪
{

[u, 0]; u ∈
H, |u| = 1

}
∪
{

[0, 0]
}

. Thus either z ∈
{

[u, 1]; u ∈ H
}

or z ∈
{

[u, 0]; u ∈
H, |u| = 1

}
or z = [0, 0].

• If z ∈
{

[u, 1]; u ∈ H
}

then z ∈ H. If z = 0 then for all θ, φ ∈ [0, π]
and ψ ∈ (−π, π], A(θ, φ, ψ) is a quaternion, whence 0A(θ, φ, ψ) = 0.
Thus z = 0 = 0A(θ, φ, ψ). If z 6= 0 then there are r ∈ (0,∞) and
θ, φ ∈ [0, π] and ψ ∈ (−π, π] such that z = rA(θ, φ, ψ).

• If z ∈
{

[u, 0]; u ∈ H, |u| = 1
}

then there is u ∈ H where |u| = 1
such that z = [u, 0] = [1 × u, 0 × 1] = [1, 0] × [u, 1]. Since |u| = 1,
u 6= 0, whence there are θ, φ ∈ [0, π] and ψ ∈ (−π, π] such that u =
|u|A(θ, φ, ψ). Thus z = [1, 0]×[u, 1] =∞×u =∞×(|u|A(θ, φ, ψ)) =
∞× (1×A(θ, φ, ψ)) =∞A(θ, φ, ψ).

• If z = [0, 0] then for all θ, φ ∈ [0, π] and ψ ∈ (−π, π], A(θ, φ, ψ) is
a quaternion, whence A(θ, φ, ψ) = [A(θ, φ, ψ), 1]. Thus z = [0, 0] =
[0×A(θ, φ, ψ), 0× 1] = [0, 0]× [A(θ, φ, ψ), 1] = ΦA(θ, φ, ψ).

Thus HT ⊂ {rA(θ, φ, ψ); r ∈ [0,∞] ∪ {Φ}, θ, φ ∈ [0, π], ψ ∈ (−π, π]} .
If r ∈ [0,∞] ∪ {Φ} and θ, φ ∈ [0, π] and ψ ∈ (−π, π] then r ∈ [0,∞] ∪

{Φ} ⊂ RT ⊂ HT and A(θ, φ, ψ) ∈ H ⊂ HT , whence rA(θ, φ, ψ) ∈ HT .
Thus {rA(θ, φ, ψ); r ∈ [0,∞] ∪ {Φ}, θ, φ ∈ [0, π], ψ ∈ (−π, π]} ⊂ HT .

a) Proved above.

b) Proved above.

c) If θ1 = θ2, φ1 = φ2 and ψ1 = ψ2 then clearly ∞A(θ1, φ1, ψ1) =
∞A(θ2, φ2, ψ2). If ∞A(θ1, φ1, ψ1) = ∞A(θ2, φ2, ψ2) then
[A(θ1, φ1, ψ1), 0] = [1×A(θ1, φ1, ψ1), 0×1] = [1, 0]×[A(θ1, φ1, ψ1), 1]
= ∞A(θ1, φ1, ψ1) = ∞A(θ2, φ2, ψ2) = [1, 0] × [A(θ2, φ2, ψ2), 1] =
[1 × A(θ2, φ2, ψ2), 0 × 1] = [A(θ2, φ2, ψ2), 0], whence there is a pos-
itive α ∈ R such that A(θ1, φ1, ψ1) = αA(θ2, φ2, ψ2). Hence 1 =
|A(θ1, φ1, ψ1)| = |αA(θ2, φ2, ψ2)| = |α||A(θ2, φ2, ψ2)| = |α| × 1 =
|α| = α. Thus A(θ1, φ1, ψ1) = αA(θ2, φ2, ψ2) = 1 × A(θ2, φ2, ψ2) =
A(θ2, φ2, ψ2), whence θ1 = θ2, φ1 = φ2 and ψ1 = ψ2.

d) The result follows from the uniqueness of the polar representation
of the non-zero quaternions.

Notice that all transquaternions have a unique polar description, ex-
cept zero and nullity.
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Definition 22. We denote

HT
∞ :=

{
∞A(θ, φ, ψ); θ, φ ∈ [0, π], ψ ∈ (−π, π]

}
.

Theorem 23. It follows that

HT = H ∪HT
∞ ∪ {Φ}.

Proof. By Theorem 21,

HT = {rA(θ, φ, ψ); r ∈ [0,∞] ∪ {Φ}, θ, φ ∈ [0, π], ψ ∈ (−π, π]} ,

whence

HT = {rA(θ, φ, ψ); r ∈ [0,∞] ∪ {Φ}, θ, φ ∈ [0, π], ψ ∈ (−π, π]}
= {rA(θ, φ, ψ); r ∈ [0,∞), θ, φ ∈ [0, π], ψ ∈ (−π, π]}
∪ {∞A(θ, φ, ψ); θ, φ ∈ [0, π], ψ ∈ (−π, π]}
∪ {ΦA(θ, φ, ψ); θ, φ ∈ [0, π], ψ ∈ (−π, π]}

= H ∪HT
∞ ∪ {Φ}.

Definition 24. Let us refer to the elements of H as finite transquater-
nions, to the elements of HT

∞∪{Φ} as non-finite transquaternions or strict
transquaternions and, particularly, to the elements of HT

∞ as infinite tran-
squaternions.

6 Properties of Transquaternions

Theorem 25. Elementary properties of transquaternion arithmetic.

a) The sum of nullity with any transquaternion is nullity: Φ + z =
z + Φ = Φ for all z ∈ HT .

b) The sum of any non-opposite, infinite transquaternions is an infinite
transquaternion: If z, w ∈ HT

∞ and z 6= −w then z + w ∈ HT
∞.

c) The sum of opposite, infinite transquaternions is nullity: If z, w ∈
HT
∞ and z = −w then z + w = Φ.

d) The sum of an infinite transquaternion with a finite transquaternion
is the infinite transquaternion: If z ∈ HT

∞ and w ∈ H then z + w =
w + z = z.

e) The opposite of nullity is nullity: −Φ = Φ.

f) Subtraction of a non-finite transquaternion from itself is nullity: If
z ∈ HT \H then z − z = Φ.

g) The product of nullity with any transquaternion is nullity: Φ× z =
z × Φ = Φ for all z ∈ HT .

h) The product of any infinite transquaternions is an infinite tran-
squaternion: If z, w ∈ HT

∞ then z × w ∈ HT
∞.

i) The product of an infinite transquaternion with a non-zero, finite
transquaternion is an infinite transquaternion: If z ∈ HT

∞ and w ∈
H \ {0} then z × w,w × z ∈ HT

∞.
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j) The product of an infinite transquaternion with zero is nullity: If
z ∈ HT

∞ then z × 0 = 0× z = Φ.

k) The reciprocal of nullity is nullity: Φ−1 = Φ.

l) The reciprocal of zero is infinity: 0−1 =∞.

m) The reciprocal of any infinite transquaternion is zero: If z ∈ HT
∞

then z−1 = 0.

n) Division of non-finite transquaternions is nullity: If z, w ∪ HT \ H
then z/w = w\z = Φ.

o) Zero divided by zero is nullity:
0

0
= Φ.

Proof. Let z, w ∈ HT be arbitrary. There are x, u ∈ H and y, t ∈ {0, 1}
such that z =

x

y
and w =

u

t
.

a) Φ + z =
0

0
+
x

y
=

0× y + x× 0

0× y =
0

0
= Φ. Similarly z + Φ = Φ.

b) If z, w ∈ HT
∞ and z 6= −w then x 6= 0, u 6= 0, y = 0, t = 0 and

x

|x| +
u

|u| 6= 0, whence z + w =
x

0
+
u

0
=

x
|x| + u

|u|

0
∈ HT

∞.

c) If z, w ∈ HT
∞ and z = −w then x 6= 0, u 6= 0, y = 0, t = 0 and

x

|x| +
u

|u| 6= 0, whence z + w =
x

0
+
u

0
=

x
|x| + u

|u|

0
=

0

0
= Φ.

d) If z ∈ HT
∞ and w ∈ H then x 6= 0, y = 0, t 6= 0, whence z + w =

x

0
+
u

1
=
x× 1 + u× 0

0× 1
=
x

0
= z. Similarly w + z = z.

e) −Φ = −0

0
=
−0

0
=

0

0
= Φ.

f) The result follows from items (a), (c) and (e).

g) Φ× z =
0

0
× x

y
=

0× x
0× y =

0

0
= Φ. Similarly z × Φ = Φ.

h) If z, w ∈ HT
∞ then x 6= 0, u 6= 0, y = 0, t = 0 and xu 6= 0, whence

z × w =
x

0
× u

0
=

xu

0× 0
=
xu

0
∈ HT

∞.

i) If z ∈ HT
∞ and w ∈ H \ {0} then x 6= 0, y = 0, u 6= 0, whence

z × w =
x

0
× u

t
=
x× u
0× t =

xu

0
∈ HT

∞. Similarly w × z ∈ HT
∞.

j) If z ∈ HT
∞ then y = 0, whence z × 0 =

x

0
× 0

1
=
x× 0

0× 1
=

0

0
= Φ.

Similarly 0× z = Φ.

k) Φ−1 =

(
0

0

)−1

=
0

0
= Φ.

l) 0−1 =

(
0

1

)−1

=
1

0
=∞.

m) If z ∈ HT
∞ then z−1 =

(x
0

)−1

=
0
x

1
=

0

1
= 0.
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n) The result follows from items (g), (j), (k) and (l).

o) The result follows from items (j) and (l).

Definition 26. Given z ∈ HT take x ∈ H and y ∈ {0, 1} such that z =
x

y

and define z :=
x

y
. We call z the conjugate of the transquaternion z.

We are again abusing notation when we reuse the symbol for the con-
jugate of quaternions to define conjugate in HT . However, this is not a
problem because the context distinguishes the set to which the symbols

refer. When we say that z =
x

y
it is clear that the symbol “ x ” on the left

hand side of the equality refers to conjugate in HT while the symbols “ x
” on the right hand side of the equality refer to conjugate in H. Moreover,
when the operation of taking the conjugate in HT is restricted to H it
coincides with the usual conjugate in H.

Theorem 27. The conjugate of a transquaternion is well defined. That is,
the conjugate is independent of the choice of the fraction which represents
the transquaternion. In other words, if x,w ∈ H and y, t ∈ {0, 1} and

x

y
=
w

t
then

(
x

y

)
=
(w
t

)
.

Proof. Let x,w ∈ H and y, t ∈ {0, 1} such that
x

y
=
w

t
. If y = 1 then

t = 1, whence x = w and the result is immediate. If y = 0 and x = 0
then t = 0 and w = 0, whence the result is also immediate. If y = 0 and

x 6= 0 then t = 0 and w 6= 0 and
x

|x| =
w

|w| ∈ H, whence
x

|x| =
w

|w| . Thus,(
x

y

)
=
(x

0

)
=
x

0
=

x
|x|

0
=

w
|w|

0
=
w

0
=
(w

0

)
=
(w
t

)
.

Of course, when z ∈ HT , x ∈ H and y ∈ {0, 1} such that z =
x

y
, it

follows that z =
x

y
.

Theorem 28. Given arbitrary z, w ∈ HT it follows that:

a) z = z.

b) z + w = z + w.

c) −w = −w.

d) z − w = z − w.

e) zw = w z.

f) w−1 = w−1.

g) z/w = w\z and w\z = z/w.

Proof. Let z, w ∈ HT be arbitrary. Let x, u ∈ H and y, t ∈ {0, 1} such

that z =
x

y
and w =

u

t
.
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a) z =

(
x

y

)
=

(
x

y

)
=
x

y
=
x

y
= z.

b) If y = t = 0, x 6= 0 and u 6= 0 then z + w =
x

0
+
u

0
=

(
x
|x| + u

|u|

0

)
=

x
|x| + u

|u|

0
=

(
x
|x|

)
+
(

u
|u|

)
0

=

x

|x|
+ u

|u|

0
=

x
|x| + u

|u|

0
=

x

0
+
u

0
=(x

0

)
+
(u

0

)
= z + w. Otherwise z + w =

x

y
+
u

t
=

(
xt+ uy

yt

)
=

xt+ uy

yt
=
xt+ u y

yt
=
xt+ uy

yt
=
x

y
+
u

t
=

(
x

y

)
+
(u
t

)
= z + w.

c) −w =
(
−u
t

)
=
(−u
t

)
=
−u
t

=
−u
t

= −u
t

= −
(u
t

)
= −w.

d) It follows from (b) and (c).

e) zw =

(
x

y

u

t

)
=

(
xu

yt

)
=
xu

yt
=
ux

yt
=
ux

ty
=
u

t

x

y
=
(u
t

)(x
y

)
=

w z.

f) If u 6= 0 then w−1 =
(u
t

)−1

=

( t
u

1

)
=

(
t
u

)
1

=
t
u

1
=

(
t
u

1

)
=(

u

t

)−1

=
(u
t

)−1

= w−1. Otherwise w−1 =
(u
t

)−1

=

(
t

u

)
=
t

u
=

t

u
=
(u
t

)−1

=

(
u

t

)−1

=
(u
t

)−1

= w−1.

g) It follows from items (e) and (f).

Definition 29. Given z ∈ HT , take x ∈ H and y ∈ {0, 1}, such that z =
x

y
, and define |z| :=

|x|
|y| . We call |z| the modulus of the transquaternion

z.

Once more we are abusing notation when we reuse the symbol for

modulus. However, again, when we say that |z| = |x||y| it is clear that the

symbol “|x|” on the left hand side of the equality refers to the modulus in
HT , while the symbol “|x|”, on the right hand side of the equality, refers
to the norm in H. When the operation of taking the modulus in HT is
restricted to H it coincides with the norm on H.

Theorem 30. The modulus of a transquaternion is well defined. That is,
the modulus is independent of the choice of the fraction which represents
the transquaternion. In other words, if x,w ∈ H and y, t ∈ {0, 1} and
x

y
=
w

t
then

∣∣∣∣xy
∣∣∣∣ =

∣∣∣w
t

∣∣∣.
Proof. Let x,w ∈ H and y, t ∈ {0, 1} such that

x

y
=
w

t
. If y = 1 then

t = 1, whence x = w and the result is immediate. If y = 0 and x = 0 then
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t = 0 and w = 0, whence the result is also immediate. If y = 0 and x 6= 0

then t = 0 and w 6= 0, whence

∣∣∣∣xy
∣∣∣∣ =∞ =

∣∣∣w
t

∣∣∣.
Again, let z ∈ HT , x ∈ H and y ∈ {0, 1}, such that z =

x

y
. It follows

that |z| = |x|
y

.

Theorem 31. Given arbitrary z, w ∈ HT it follows that:

a) |z|2 = zz.

b) |z| = |z|.
c) |zw| = |z||w|.
d) |w−1| = |w|−1.

e) |z/w| = |z|/|w| = |w|\|z| = |w\z|.
f) |z + w| 6> |z|+ |w|.

Proof. Consider arbitrary z, w ∈ HT . Suppose z =
x

y
and w =

u

t
where

x, u ∈ H and y, t ∈ {0, 1}.

a) zz =
x

y

(
x

y

)
=
x

y

x

y
=
xx

y2
=
xx

y2
=
|x|2

y2
=
|x|
y

|x|
y

= |z||z| = |z|2.

b) |z| =

∣∣∣∣∣
(
x

y

)∣∣∣∣∣ =

∣∣∣∣xy
∣∣∣∣ =
|x|
y

=
|x|
y

= |z|.

c) |zw| =
∣∣∣∣xy ut

∣∣∣∣ =

∣∣∣∣xuyt
∣∣∣∣ =
|xu|
yt

=
|x||u|
yt

=
|x|
y

|u|
t

= |z||w|.

d) If u 6= 0 then |w−1| =

∣∣∣∣(ut )−1
∣∣∣∣ =

∣∣∣∣ t
u

1

∣∣∣∣ =

∣∣ t
u

∣∣
1

=

|t|
|u|

1
=

(
|u|
|t|

)−1

=∣∣∣u
t

∣∣∣−1

= |w|−1. Otherwise, |w−1| =

∣∣∣∣(ut )−1
∣∣∣∣ =

∣∣∣∣ tu
∣∣∣∣ =

|t|
|u| =(

|u|
|t|

)−1

=
∣∣∣u
t

∣∣∣−1

= |w|−1.

e) It follows from (c) and (d).

f) (I) If z = Φ or w = Φ, say z = Φ, then |z + w| = |Φ + w| = |Φ| =
Φ 6> Φ = Φ + |w| = |Φ|+ |w| = |z|+ |w|.
(II) If z ∈ H and w ∈ H the result follows from the ordinary Triangle
Inequality of quaternions.

(III) If either z ∈ H and w ∈ HT
∞ or z ∈ HT

∞ and w ∈ H, say z ∈ H
and w ∈ HT

∞, then z + w ∈ HT
∞, whence |z + w| = ∞ 6> ∞ =

|z|+∞ = |z|+ |w|.
(IV) If z, w ∈ HT

∞ and z 6= −w then z + w ∈ HT
∞, whence |z + w| =

∞ 6>∞ =∞+∞ = |z|+ |w|.
(V) If z, w ∈ HT

∞ and z = −w then z + w = Φ, whence |z + w| =
|Φ| = Φ 6>∞ =∞+∞ = |z|+ |w|.

15



7 Transquaternion Metric and Topology

Let D := {z ∈ H; |z| < 1}, D := {z ∈ H; |z| ≤ 1} and

ϕ : HT \ {Φ} → D ⊂ HT

rA(θ, φ, ψ) 7→ 1

1 + 1
r

A(θ, φ, ψ)
.

Note that ϕ|H is an homeomorphism between H and D with respect to
the usual topology on H, the topology induced by the norm of H.

Theorem 32. Define d : HT ×HT → R where

d(z, w) =


0, if z = w = Φ
2, if z = Φ or else w = Φ.

|ϕ(z)− ϕ(w)|, otherwise

It follows that d is a metric on HT and, therefore, HT is a metric space.

Proof. Clearly, for all z, w ∈ HT , d(z, w) = 0 if and only if z = w,
d(z, w) = d(w, z) and d(z, w) ≥ 0. If z, w and u are all non nullity then
d(z, u) = |ϕ(z)− ϕ(u)| = |ϕ(z)− ϕ(w) + ϕ(w)− ϕ(u)| ≤ |ϕ(z)− ϕ(w)|+
|ϕ(w)−ϕ(u)| = d(z, w) +d(w, u). The reader can verify that the Triangle
Inequality is also true when at least one among z, w and u is nullity.

Theorem 33. The topology on H induced by the metric topology of HT

is the usual topology of H. That is, if U ⊂ HT is open on HT then U ∩H
is open (in the usual sense) on H and if U ⊂ H is open (in the usual sense)
on H then U is open on HT .

Proof. Let us denote, for all z ∈ HT and all positive ρ ∈ R, the ball
of centre z and radius ρ on HT as BHT (z, ρ), that is, BHT (z, ρ) = {w ∈
HT ; |ϕ(z) − ϕ(w)| < ρ}, and, for all z ∈ H and all positive ρ ∈ R, the
ball of centre z and radius ρ on H as BH(z, ρ), that is, BH(z, ρ) = {w ∈
H; |z − w| < ρ}.

Let U ⊂ HT be open on HT and let z ∈ U ∩ H. As U is open on HT ,
there is a positive ε ∈ R such that BHT (z, ε) ⊂ U . As ϕ|H is continuous,
there is a positive δ ∈ R such that if w ∈ H and |z − w| < δ then
|ϕ(z)−ϕ(w)| < ε. Thus BH(z, δ) ⊂ BHT (z, ε)∩H ⊂ U ∩H, whence U ∩H
is open (in the usual sense) on H.

Now, let U ⊂ H be open (in the usual sense) on H and let z ∈ U .
Notice that there are r ∈ [0,∞) and θ, φ ∈ [0, π] and ψ ∈ (−π, π] such
that z = rA(θ, φ, ψ). As U is open (in the usual sense) on H, there is
a positive ε ∈ R such that BH(z, ε) ⊂ U . As ϕ−1

|D is continuous, there is
a positive δ ∈ R such that δ < |ϕ(z) − A(θ, φ, ψ)| and if ϕ(w) ∈ D and
|ϕ(z)−ϕ(w)| < δ then |z−w| < ε. Since ϕ(w) ∈ D it follows that w ∈ H.
Thus BHT (z, δ) ⊂ BH(z, ε) ⊂ U , whence U is open on HT .

Theorem 34. ϕ is an homeomorphism.

Proof. Clearly ϕ is bijective.
Let z ∈ HT \ {Φ} be arbitrary. Let ε ∈ R be positive arbitrary. By

Theorem 33, BHT (ϕ(z), ε)∩H is open in the usual sense on H, whence there
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is a positive δ ∈ R such that BH(ϕ(z), δ) ⊂ BHT (ϕ(z), ε)∩H. Thus if w ∈
HT and d(w, z) < δ then |ϕ(w) − ϕ(z)| < δ, whence ϕ(w) ∈ BH(ϕ(z), δ)
which implies ϕ(w) ∈ BHT (ϕ(z), ε) ∩ H and, thereby, d(ϕ(w), ϕ(z)) < ε.
Therefore ϕ is continuous at z.

In a similar way we see that ϕ−1 is also continuous.

Remark 35. Because of Theorem 33:

i) Let (xn)n∈N ⊂ H and let L ∈ H, it follows that lim
n→∞

xn = L on HT

if and only if lim
n→∞

xn = L, in the usual, sense on H.

ii) Let A ⊂ H, f : A→ H, x ∈ A′ and L ∈ H, it follows that lim
x→x

f(z) =

L on HT if and only if lim
x→x

f(z) = L, in the usual sense, on H.

iii) Given x ∈ A, it follows that f is continuous in x on HT if and only
if f is continuous in x, in the usual sense, on H.

Theorem 36. HT is disconnected.

Proof. HT =
(
H∪HT

∞
)
∪{Φ} and the sets H∪HT

∞ and {Φ} are open.

Notice that Φ is the unique isolated point of HT .

Remark 37. Since Φ is an isolated point of HT :

i) Let (xn)n∈N ⊂ HT . Notice that lim
n→∞

xn = Φ if and only if there is

k ∈ N such that xn = Φ for all n ≥ k.

ii) Let A ⊂ H, f : A→ HT and x ∈ A′, it follows that lim
x→x

f(z) = Φ if

and only if there is a neighbourhood U of x such that f(z) = Φ for
all x ∈ U \ {x}.

iii) If Φ ∈ A then f is continuous in Φ.

Theorem 38. HT is a separable space.

Proof. (Q + iQ + jQ + kQ) ∪ {Φ} is countable and dense in HT .

Theorem 39. HT is compact.

Proof. Since D is compact under the usual topology, by Theorem 33, D
is compact under the topology of HT . Since ϕ is an homeomorphism and
D is compact it follows that HT \ {Φ} is compact. Thus (HT \ {Φ})∪{Φ}
is compact.

Theorem 40. HT is complete.

Proof. Every compact metric space is complete.

Since HT is separable compact complete metric topological space, HT

has all properties of such a space.

17



8 Discussion

The quaternions are used in various applications in computer science
and physics. The transquaternions obviously have an application as an
exception-free version of the quaternions in computing but it would be in-
teresting to know if they have applications in physics, developing the use
of transreal numbers in physical equations [4]? Quaternions have been
used to describe all four of Maxwell’s equations in a single differential
equation of a quaternion variable. We wonder if Maxwell’s equations can
be totalised and, if they can, do the singularities of each individual equa-
tion coincide with the transquaternion singularities? We would also like
to know if empirically observable singularities in electrodynamics can be
analysed by the putative trans-Maxwell’s-equations in transvector ([2],
Definition 3.2) or transquaternion form?

There are four normed division algebras based on the field of real
numbers. These are the reals, complexes, quaternions, and octonions.
The first three of these have been totalised, ab initio, as the transreals [1]
[6], transcomplexes [3] [5] and, now, the transquaternions. All four of the
usual normed division algebras can be developed using the Cayley-Dickson
Construction but this construction relies on the Cartesian form of complex
numbers, which is degenerate for transnumbers, where a polar form must
be used. Nonetheless we wonder if a polar form of this construction can be
developed that constructs the transnumber systems, similar to transfields
([6], Section IV).

The four normed division algebras are the first four algebras in a se-
quence of algebras generated by the Cayley-Dickson Construction. Real
algebra appears as the zero’th algebra in the sequence, it operates on a
20 = 1 tuple of real numbers. Complex algebra appears as the first alge-
bra, counting from zero, and operates on a 21 = 2 tuple of real numbers.
Quaternion algebra is the second algebra, counting from zero, and oper-
ates on a 22 = 4 tuple of real numbers. Octonion algebra is the third
algebra, counting from zero, and operates on a 23 = 8 tuple of real num-
bers. Further algebras are generated in sequence. Thus the n’th algebra
operates on a tuple of 2n real numbers. We wonder if every non-negative
integer, n, generates a transalgebra operating on a tuple of 2n transreal
numbers? In transreal arithmetic, there is a greatest transreal number,
2∞ =∞. We wonder if there is a last, infinity’th, transalgebra generated
by the putative polar form of the Cayley-Dickson Construction? Is there a
nullity’th transalgebra operating on a tuple of 2Φ = Φ transreal numbers?
What values can n take in the construction of algebras operating on a 2n

tuple of transreal numbers?
We can choose a metric so that each of the transreal, transcomplex

and transquaternion algebras are homeomorphic to a unit ball, together
with an isolated point at nullity. Thus the ordered transreal numbers cor-
respond to a 1-ball whose surface is a 0-sphere. The interior of the ball is a
line segment, which is bijective with the real number line, while the sphere
is composed of the two end-points terminating the line segment, which are
bijective with the transreal positive infinity and negative infinity. Simi-
larly the transcomplex numbers are a 2-ball whose surface is a 1-sphere.
The interior of the ball is bijective with the polar-complex disc and with
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the Cartesian-complex-plane. The sphere is the circle at infinity. Finally,
the transquaternions correspond to a 4-ball whose surface is a 3-sphere.
The interior of the ball is bijective with the space of quaternions and the
sphere is the sphere at infinity. In every case, nullity corresponds to an
isolated point that lies outside the space in which the ball is embedded.
We wonder if transoctonions correspond to an 8-ball whose surface is a
7-sphere, together with an isolated point at nullity? More generally, we
wonder whether every n’th transalgebra corresponds to a 2n ball whose
surface is a 2n−1 ball, together with an isolated point at nullity?

9 Conclusion

We introduce transquaternions, which totalise the arithmetical operations
of quaternion addition, subtraction, multiplication, and both left and right
division. In particular, division of quaternions by zero is allowed.

Transquaternions are a separable compact complete metric topological
space. The transquaternions are homeomorphic to the unit hypersphere
or glome including its interior, together with an isolated point at nullity.
The usual quaternions fill out the 4D interior of the hypersphere. The
infinite transquaternions are produced by dividing a non-zero quaternion
by zero. They fill out the 3D surface of the hypersphere. The nullity
transquaternion is produced by dividing zero by zero – it is an isolated
point that lies outside the 4D space containing the hypersphere.

We propose future work, including the application of transnumbers in
physics, the development of the transoctonions, and an examination of
the construction of Cayley-Dickson algebras.
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