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Abstract

Datatypes and abstract datatypes are positioned as results of importing
aspects of universal algebra into computer science and software engineer-
ing. It is suggested that 50 years later, by way of a transfer in the opposite
direction, outcomes of research on datatypes can be made available via
elementary arithmetic. This idea leads to the notions of an arithmetical
signature, an arithmetical datatype and an arithmetical abstract datatype
and to algebraic specifications for such entities. The area of fractions in
elementary arithmetic is chosen as an application area and while tak-
ing a common meadow of rational numbers as the basis, an arithmetical
datatype equipped with an absorptive element. The use of datatypes and
signatures makes syntax available for giving precise definitions in cases
where lack of precision is common place. Fracterm is coined as the name
for a fraction when primarily understood as a syntactic entity. The main
contribution of the paper is to provide a detailed terminology of fracterms.
Subsequently the fraction definition problem is stated, a distinction be-
tween explicit definitions of fractions and implicit definitions of fractions
is made, and an outline of a survey of both forms of definitions of the
notion of a fraction is given.
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1 Introduction

The signature Σurd, for unital rings with division, is the signature of unital rings
Σur = (0, 1,+, ·,−) augmented with a two place division operator written x/y
or alternatively x

y . An arithmetical signature is defined as either Σurd or any
signature which extends Σurd. Σur is termed an arithmetical signature without
division.

A signature is a collection of names for sorts, constants for these sorts and
functions over these sorts. For a function name in a signature an arity is given,
i.e. information on how many arguments it takes, and from what sort in the
signature the respective arguments come, as well as in what sort a result is
obtained. Different notations may be used to denote the members of a signature,
for instance f : S1 × S2 × S3 → S4 may indicate a function named f with arity
3 which takes arguments in sorts S1, S2, and S3 respectively and which yields
results in sort S4. The same notation also asserts the presence of the four (or
less if some coincide) sorts S1,..,S4

I will assume that each algebra A comes with a unique signature Σ = Σ(A).
If Σ(A) = Σ then A is called a Σ-algebra. An arithmetical algebra is an algebra
with an arithmetical signature. A Σ-algebra constitutes an interpretation of its
signature providing for each sort a set as its interpretation and for each constant
name an element of the corresponding set and for each function name the graph
of a total function taking its arguments in the respective interpretations of
the argument sort names and producing a result in the interpretation of its
output sort. Below I will often ignore the distinction between a name and its
interpretation and speak of sorts as sets, constants as elements of sorts and
functions (names) as functions.

I will assume that the sorts of an algebra are non-empty sets. Homomor-
phisms and isomorphisms between algebras must leave the signature invariant.
An algebra is minimal if for each of its sorts, each element is the interpretation
of a closed expression over its signature. A minimal algebra has no proper subal-
gebras. The converse fails, however: let Σ only contain the sort V , no constants,
and no functions. The structure A with VA = {0} is a minimal algebra without
proper subalgebras. But 0 is not the interpretation of a closed expression in
Σ = Σ(A). Datatypes are minimal algebras. An arithmetical datatype is a
minimal arithmetical algebra.

Let Σ ⊆ Γ be signatures, and let Σ(A) = Γ. Now A|Σ, the Σ-reduct of A
results from A by forgetting the sorts constants and functions outside Σ. When
reducing an algebra the various sorts do not change. Complementary to the idea
of reduction is that of expansion: A is an expansion of A|Σ. Besides reduct and
expansion there are the notions of subalgebra and extension. A is a subalgebra
of B if (i) both have the same signature, (ii) each sort of A is a subset of the
corresponding sort of B, (iii) constants have the same interpretations in both
structures, and (iv) the functions of A are restrictions of the equally named
functions of B to the respective sorts of A. In case A is a subalgebra of B it is
also said that B is an extension of A. In case B is an expansion of an extension
of A, it is also said that B is an enlargement of A.
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This paper has two objectives: (i) to provide a manifesto on arithmetical
datatypes: providing a rationale for the use of the theory of datatypes and
abstract dataypes in elementary arithmetic, and (ii) to exemplify the relevance
of this approach by introducing the notion of a fracterm and then providing
a detailed terminology for fracterms, and for related notions of fracsign and
fracpair. The underlying objective for introducing such terminology is that it is
expected to be helpful for investigating the notion of a fraction. That fractions
are worth systematic attention cannot be convincingly explained, however, in
advance of actually investigating fractions in detail, and the observation that
fraction is a complicated concept, if not a problematic concept, emerges only
after careful preparations.

In computer science the notion of a datatype serves as an abstraction of
a data structure, the latter understood as featuring in program notations and
in operating systems and sometimes in hardware designs. The notion of an
abstract datatype has emerged as yet a further step of mathematical abstraction
of a datatype. An abstract datatype is the isomorphism class of a datatype. The
theory of datatypes and abstract datatypes can be viewed as an application and
elaboration of concepts and results from mathematics and logic, mainly from
universal algebra, to the theory and practice of software construction.

In this paper I intend to move in the opposite direction and to make results
from (abstract) datatype theory available for application in elementary mathe-
matics. The point of departure in computer science, with respect to this “move”
requires some preliminary clarification. Throughout the literature on datatypes
and abstract datatypes various terms and phrases have not always been used
in a consistent manner. As a consequence of such inconsistencies in the litera-
ture I will need to make some choices which are only partially supported by the
available literature. This holds in particular for the choice to view an abstract
datatype as an isomorphism class of a datatype.

1.1 Symbolic numbers

In [34] it is explained how the symbolic approach to arithmetical algebra came
to accept negative numbers and imaginary numbers, while a vocal opposition
against these innovations was present. Arithmetical datatypes with or without
division provide ample freedom for systematically extending arithmetical struc-
tures with new elements thereby extending the symbolic approach beyond its
classical successes: negative numbers, imaginary numbers, quaternions, p-adic
numbers, dual numbers, and transcendental numbers.

Elements in a domain of numbers which embody an idea rather than a
measurable quantity may be called symbolic values. A prime example of a
symbolic value is ⊥. Below some functions, which conventionally are considered
partial, are made total by taking the value ⊥ to represent an (otherwise) absent
outcome. ⊥may be understood as the unique solution of the system of equations
{0 · x = x, 1 + x = x}. This amounts to working with the signature Σur,⊥ which
extends Σur with⊥. Examples of the use of⊥ in integer arithmetic are: 1−2 = ⊥
(⊥-totalised subtraction on natural numbers), 3 : 4 = ⊥ (⊥-totalized division
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on integers), 3\4 = 1 and 3\0 = ⊥ with −\− naming integer division with
remainder, and −\\− naming the remainder so that 7\2 = 3, 7\\2 = 1, and
7\\0 = ⊥.

The value ⊥ is an absorptive element of the domain of numbers. Any oper-
ation taking ⊥ as one of its arguments must return ⊥. Including an absorptive
element in arithmetic is not new. Wheels (see [37, 16, 17]) contain ⊥, though
without introduction of a new constant name, as the result of dividing 0 by
0. The transrational numbers of [1] contain an absorptive element (written Φ
instead of ⊥) named nullity. Wheels and transrationals feature the absorptive
element in the presence of symbolic values for infinity (a non-zero solution of the
equations {1/0 = x, 1/x = 0}). Common meadows [10, 11] contain ⊥(written
a for additional/absorptive in these papers) as a symbolic number. Currently
⊥(Φ),∞, and −∞ constitute the most common symbolic numbers. The con-
stant ε in the context of dual numbers may be considered a symbolic number
which has gained significant acceptance. I refer to [4] for a discussion of dual
numbers in a setting of (total) arithmetical datatypes.

Including symbolic numbers like ⊥ in an arithmetical algebra has not yet
gained significant acceptance. The rationale for adopting ⊥ is based on expected
advantages of working with total functions, which is both formally simpler than
working with partial functions, and is more closely linked to computer operation.
Whether or not such advantages will materialise to such an extent that symbolic
numbers in general, and ⊥ in particular, will gain wider acceptance, remains to
be seen.

1.2 Which functions to include in a signature

In software engineering the signature of a datatype names at least those con-
stants and operations which a user, that is a programmer, is allowed or supposed
to apply when making use of an implementation of the abstract datatype. This
explanation provides a criterion as to whether or not to include certain opera-
tions in a signature.

When a datatype is used outside the context of software engineering, for
instance for an explanation of some aspects of elementary arithmetic, another
criterion for the inclusion of sorts constants and functions in a signature is
required than mere actual or expected occurrence in computer programs. Like
in software engineering, it is fruitful to presuppose some distinction between
developer (author, designer) and user. For instance in elementary arithmetic
one may think of students as users, and of the authors of course material as
developers. Teachers feature a spectrum: some may be considered developers
and others may best be considered users.

When working outside software engineering a datatype is presented together
with its signature and perhaps together with a specification of it. Specifications
often take the form of sets of equations, which are understood as rewrite rules
from left (LHS) to right (RHS). A specification is called a DDRS (datatype
defining rewrite system) if it is weakly terminating and ground confluent.

Importantly it will more often than not be the case that the designer/developer
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has access to operations which are not listed in the signature. The prime exam-
ple of such an operation is the semantic function [[−]] which assigns an entity [[P ]]
in a sort SA of the datatype A to a closed expression P of sort S over signature
Σ(A).

Moreover a datatype may come with notations for elements of its sorts which
are then taken for constants in the signature at hand. In the case of arithmeti-
cal datatypes without division it is plausible to have decimal number notations
(−12, 0, 275 etc.) as constants. Upon taking natural numbers in decimal nota-
tion for constants, say 57+101 = [[57+101]] becomes a valid assertion expressing
the same assertion as 57 + 101 = 158.

1.3 Which functions not to include in a signature

The choice of a signature in some context of interest is a matter of design,
and different signatures may serve different but related objectives. For each
application area, and for each approach to it which involves the introduction of
datatypes, it is unavoidable that below some level of granularity constants and
operations which might be important are nevertheless left outside a signature.
The semantic function [[−]] has already been mentioned as an example of a
function left outside a signature, but more appealing examples are easily found.
For instance in the case of arithmetic one may consider the details of working
with decimal notation. Decimal number notation uses lists of decimals and
operations on these, which can be easily specified with appropriate auxiliary
functions, which, however one may prefer not to expose to a user.

1.4 Datatypes and abstract datatypes

Conventionally a datatype is a particular kind of feature of a program notation,
or of an instance of the use of that feature in a program, or a mechanism offered
by an operating system which enables a program to make use of that kind of
feature. Secondly it is a single sorted or many sorted minimal algebra, which
is a notion from mathematical logic. In the practical literature on computer
programming the first meaning of datatype is most prominent. However, I will
use datatype in the second sense only.

Definition 1. An algebra of signature Σ is minimal if each of its elements is
the interpretation of a closed Σ-expression.

Definition 2. A datatype (of signature Σ) is a minimal Σ algebra with non-
empty sorts only. A datatype is a datatype of some signature Σ.

As stated above the literature on computer programming is not unanimous
on this matter, and both definitions incorporate a definite choice, for which
equally valid alternatives exist. Having made this choice, however, an abstract
datatype is the isomorphism class of a datatype.

Definition 3. An abstract datatype (of signature Σ) is the isomorphism class
of a datatype of signature Σ. An abstract datatype is an abstract datatype of
some signature.
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In addition to the mentioned ambiguity regarding the notion of a datatype
there is additional ambiguity in the literature regarding the notion of an abstract
datatype. Authors on the theory and practice of datatypes, who understand
datatypes as a systems feature prefer to view an algebra as an abstract datatype.
If, however, one perceives a datatype as an algebra then abstraction leads to
the isomorphism class. These definitions comply with [15]. I will denote the
isomorphism relation with ∼=. For a datatype A, the abstract datatype to which
it belongs, i.e. the isomorphism class of A is denoted with [A]/∼=.

1.5 Abstract datatype specification

Central to the theory and application of abstract datatypes is the notion of
a formal specification which has originally been advocated by the ADJ group
some 50 years ago (see e.g. [24]). Specification of abstract datatypes constitutes
one of the roots of so-called formal methods in software engineering.

Definition 4. A specification of an abstract datatype (of signature Σ) is an
instance of use of any method of description which unambiguously singles out a
unique abstract datatype of the given signature.

Specifications are often classified in terms of the specification method which
is used. Algebraic specifications allow the use of collections of equations and
conditional equations to determine an appropriate class of algebras from which
either by requiring initiality or by requiring finality, a subclass of mutually
isomorphic algebras is singled out. (See e.g. [13]). First order specifications
often allow to determine an isomorphism class of models by merely requiring
minimality. If a specification determines a class of abstract datatypes rather
than a single one, it is customary to speak of a loose specification.

Definition 5. A loose specification of an abstract datatype (of signature Σ) is
an instance of use of any method of description which unambiguously singles
out a class of abstract datatypes of the given signature.

1.6 Datatype specification

Algebraic specifications may sometimes be used to specify a datatype rather
than merely an abstract datatype. If the equations constituting an algebraic
specification of an abstract datatype, when considered as a term rewrite system,
give rise to a weakly terminating and ground confluent term rewrite system (so
that normal forms of closed expressions exist and are unique), then by choosing
normal forms as elements a unique datatype is singled out.

In [14] it is shown that if auxiliary functions are admitted a computable
datatype admits an equational specification which, by being confluent and ter-
minating, specifies a unique datatype at the same time.

Definition 6. A specification of a datatype (of signature Σ) is an instance
of use of any method of description which unambiguously singles out a unique
datatype of the given signature.
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Definition 7. A loose datatype specification (of signature Σ) is an instance of
use of any method which unambiguously singles out a class of datatypes of the
given signature.

For the objectives of this paper it is of vital importance to be precise about
the distinction between datatypes and abstract datatypes.

2 Arithmetical datatypes: rationale and survey

The development of abstract datatypes in software engineering came with sev-
eral claims about the potential benefits of the use of formal specification methods
for abstract data types in software engineering. Together these claims provided a
convincing rationale for research on algebraic aspects of datatypes and abstract
datatypes. I will briefly summarise these expected benefits.

2.1 A rationale for abstract datatypes in software

The rationale for using datatypes and abstract datatypes in software technology
decomposes into different aspects. (i) Viewing datatypes as algebras provides a
path for the introduction of known methods from universal algebra for obtain-
ing a semantic basis for concepts in computer programming. (ii) Parametrized
datatypes, parameter instantiation, refinement, subsorts and partiality, error
handling, the relation between specification and implementation, and formal
verification of datatype implementations, constitute concepts of high relevance
for software engineering and program notation design. The latter disciplines
may both profit from the application of the conceptual framework of abstract
datatypes. (iii) By using a formal specification method precise, detailed, and
unambiguous descriptions of software modules can be provided. (iv) On the
basis of one or more specification techniques quite general software specification
languages may be designed, together with corresponding software development
methods. (v) Term rewriting and logic programming often allow the generation
of a prototype implementation of a datatype from an abstract data type speci-
fication. This aspect comes with a wealth of options for specialising and gener-
alising term rewriting. Conditions, priorities, applications of pattern matching
and selection of rewriting strategies come into play. (vi) Given an application
area one may design a portfolio of specifically relevant abstract datatypes for
that area and one may construct a special purpose program notation, a so-called
domain specific language (DSL), around this portfolio which is optimised for the
use of precisely those datatypes. DSL’s allow so-called low coding.

2.2 The fate of algebraic methods in software engineering

By now these objectives have persisted for half a century and hundreds of small
and large method engineering projects based on such principles have been car-
ried out, each coming with a wealth of case studies and, often with realistic
applications of various sizes. The mentioned objectives have each been met,
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while at the same time it seems fair to say that it has proven exceptionally hard
to convince individual professional programmers of the idea that the significant
investments in time and effort required when making use of these particular
formal techniques is justified by its practical value.

2.3 A rationale for arithmetical datatypes in arithmetic

The introduction of arithmetical datatypes as a concept of use for elementary
mathematics constitutes an attempt to channel back results from computer
science to its original source. The following advantages may be obtained from
doing so.

2.3.1 Introducing syntax into elementary arithmetic

Whereas for computing in general and for software engineering in particular the
explicit use of syntactic considerations and concepts is common practice, the
explicit use of syntax is still completely absent in school mathematics, except
for the backdoor of educational software which unavoidably comes with some
form of syntax. However, I claim that in the setting of elementary arithmetic
taking syntax into account is useful at the conceptual level already. This claim
is spelled out in more detail in the following paragraphs.

2.3.2 Conceptual clarification

Some aspects of elementary mathematics merit further attention and may profit
from the clarity which taking syntax into account can provide. For instance
there is a remarkable diversity in definitions of fractions, and of notions and
distinctions related to fractions, which transpires from the vast literature on
fraction teaching. Providing a systematic survey of these definitional options is
supported by having a framework of arithmetical datatypes in mind.

2.3.3 Development of educational languages and systems

Thinking in terms of arithmetical datatypes may be helpful for the design,
development, and implementation of educational software systems for teaching
arithmetic as well as for comparing such systems. Such systems may either be
specific for a preferred arithmetical datatype or may be generic for a spectrum
of different underlying arithmetical datatypes.

2.3.4 Supporting the human understanding of automated arithmetic

Under the assumption that a computer implementation of elementary arithmetic
is unavoidably based on a selection of particular arithmetical datatypes and
implementations thereof, awareness of the diversity of such datatypes may prove
helpful for the human understanding of the the software tools at hand.
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2.3.5 Novelty and scope

Admittedly there is less novelty in moving focus from computer science back to
basic arithmetic than there was 50 years ago in exporting results from universal
algebra to computer programming. There is no teaching crisis in arithmetic that
might be considered comparable to the software crisis for which formal methods
were initially meant as a cure.

Teaching elementary arithmetic, however, may well constitute the largest
teaching process world-wide with focus on a specific theme. Much effort goes
into the design of improvements to that particular educational process. There-
fore I consider the effort of investigating the foundations of school arithmetic
from the perspective of arithmetical datatypes even a without specific applica-
tion to the relevant teaching processes in mind, to be amply justified.

2.4 Application of (abstract) datatypes as an objective

The work in this paper may be understood from several different perspectives
and may be judged accordingly in different ways. The following different objec-
tives may lead to comparable considerations: focus on conceptual problems with
fractions, while restricting the tools employed to a minimum, (ii) introducing
syntactic aspects into elementary arithmetic so as to make the explicit use of
syntax “school proof”, (iii) integrating formal logic with elementary mathemat-
ics, (with as a consequence that working with arithmetical datatypes is merely
an option, and not a must), and (v) redesigning the definitions of various arith-
metical datatypes, finding optimal signatures, etc.

Contemplating the question “how to make use of datatypes and abstract
datatypes in school arithmetic”, the subsequent question arises which aspects
of the theory of (abstract) datatypes may be of relevance in the setting of
elementary arithmetic. A partial answer to this question is given in the following
Paragraphs. In the technical part of this paper, involving the definition of
fracterms and the survey/design of fracterm terminology only the first item
(signature design) is exploited. A signature is used to provide a precise language
for speaking of fracterms.

2.4.1 Signature design and informal description of datatypes

Making signatures explicit (or rather designing a signature) constitutes a major
designs phase which (abstract) datatype theory prescribes and requires. Pre-
cisely this phase is less familiar for mathematicians. Having a signature at hand
both formal and informal methods for describing a datatype with that signature
are available.

2.4.2 Abstract datatype specification

For all arithmetical (abstract) datatypes under consideration a survey of alge-
braic/formal specifications thereof is relevant. In particular it matters whether

9



or not finite specifications exist and to what extent good term rewriting prop-
erties can be obtained when reading the equations from left to right as rewrite
rules. Confluence and (weak) termination, perhaps modulo permuting rewrite
rules (such as commutativity and associativity), are the main virtues for rewrite
systems which a designer hopes to achieve. These virtues first of all support the
theoretical understanding of the (abstract) datatypes involved.

2.4.3 Infinite signatures and schematic (conditional) equations

This feature seems not to have gained any prominence in the computer science
literature. It is unproblematic and potentially useful to introduce infinite signa-
tures in the context of algebraic specifications. Below I will introduce a constant
σ for each non-zero decimal natural (a decimal digit sequence starting with a
non-zero digit; such digit sequences are collected in the set CD), and I will make
use of schemes involving metavariables u, v, w, . . . ranging over CD for equations
and conditional equations which translate into infinite collections of equations
or conditional equations by substituting all (combinations of) constants σ ∈ CD

for these metavariables. The existence of initial algebras and of final algebras
under certain restrictions, as well as the theory of term rewriting are unaffected
by the use of infinitary specifications in the way just outlined.

2.4.4 Datatype specification and prototyping

Adequate term rewriting properties for a datatype specification (i.e. having
developed a datatype defining abstract datatype specification) leads to a so-
called executable specification. Once an executable datatype specification has
been obtained automatic prototyping allows practical experimentation with it,
in advance of further optimization of an implementation.

2.4.5 (Abstract) datatype design by stepwise refinement

A classic idea is that complex (abstract) datatypes are designed on the basis of
simpler one’s by way of a sequence of enrichments. In an enrichment the signa-
ture is enriched and additional equations for specification are introduced thereby
obtaining a refinement of a specification. Enrichment may be understood as an
instance of parameter passing for a parametrised datatype (see below).

2.4.6 Final algebra semantics

An awareness of the potential gap between initial algebra semantics (involving
negation by failure) and final algebra semantics (involving double negation by
failure) may be useful. Often final algebra semantics is closer to the intuition,
in spite of the fact that it is technically more involved. Final algebra semantics
matches perfectly with co-algebras.
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2.4.7 Hidden sorts, constants and functions

Below a datatype for rational numbers will be described with elements (a, b)
where a and b are integers, b > 0 and gcd(a, b) = 1. It is an option to view
entities (a, b) as hidden constants. That implies that its use is not advised for
an end user of the system (i.e. a student) but that awareness of the presence of
the constant may be helpful for someone in charge of delivering the system, for
instance a teacher, or a person designing educational material. Technically more
involved is the option to provide constants and functions that specify addition
and multiplication on decimal notations. Such parts of a signature may be
declared hidden after having been introduced in order to obtain a higher level
of abstraction.

2.4.8 Modularity and parametrization

Below it will be assumed that multiplication and addition for integers “is known”
so that a focus on division and subtraction as newly introduced can be made
independent of differences in perspective on addition and multiplication of in-
tegers. This matter can be understood as a modular combination of various
specifications (now called specification modules or simply modules), a speci-
fication of addition and multiplication, and a specification for division which
merely makes use of names for addition and multiplication. Module algebra can
be used to deal with the combination of specifications involving hidden sorts and
functions, while the pushout construction of category theory provides a tool to
describe parameter passing.

2.4.9 Error handling

The most straightforward option, as has emerged in (abstract) datatype theory,
for dealing with problematic values is to introduce an absorptive element in
each sort, often denoted with ⊥, or ⊥S if the notation must be made specific
for a sort S. Below this strategy is applied to elementary arithmetic in order
to deal with the problematic value of the expression 1/0. However, a large
literature concerning different options for dealing with problematic values has
been developed in the context of (abstract) datatypes. And other options for
dealing with the evaluation of problematic expressions may be just as well useful
for elementary arithmetic.

3 Arithmetical datatypes with a single absorp-
tive symbolic value

For the sequel of the paper I will consider the following particular instance
of a field of rational numbers, denoted Q̂. Q̂ has the signature Σru of unital
rings. The domain |Q̂| consists of pairs (0, 1), (n,m) and (−n,m) with n and
m natural numbers in decimal notation without leading zeros, and such that
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gcd(n,m) = 1. Below I will provide some comments on decimal notation which
as such exceeds the grammar provided by Σur.

The interpretation of the constant 0 is (0, 1), the interpretation of the con-
stant 1 is (1, 1), and addition, multiplication and opposite are defined in the
usual manner while an enrichment with subtraction is defined via x − y =
x+(−y). By writing Q̂ rather than Q it is made explicit that a specific datatype
is meant, including a definite choice for its domain as a set, rather than an ab-
stract datatype, i.e. a mere isomorphism class, or a fixed but arbitrary choice
from an isomorphism class.

Using semantic bracket notation, as has become customary in computer
science, in Q̂ it is the case that [[4/6]] = (2, 3) and so on. In logical notation

one may write (Q̂ � 4/6) = (2, 3), where in the expression 4/6 4 abbreviates
1+(1+(1+1))) etc. Neither of these notations will not be used below, however.

Q̂ is an arithmetical algebra whereas it is not an arithmetical datatype be-
cause it is not a minimal algebra. For instance (1, 2) is not the interpretation
of a closed term over the signature of unital rings. In order to obtain an arith-
metical datatype which includes Q̂, introducing an enrichment with one or more
functions is unavoidable, while extension with one or more elements is optional.
I will consider various forms of division as candidates for enrichment for the
purpose of finding a minimal algebra which is closely related to Q̂.

3.1 Datatypes for rationals: expansions and extensions of

Q̂
The introduction of division in the context of Q̂ comes with a range of different
options.

3.1.1 Meadows of rational numbers

Q̂0, a meadow of rational numbers with inversive notation is obtained by expand-
ing Q̂ with an inverse function −1 given by: (0, 1)−1 = (0, 1), (n,m)−1 = (m,n),

and (−n,m)−1 = (−m,n). An initial algebra specification of Q0 = Q̂0/ ∼= is
given in [15]. The abstract datatype Q0 occurs in [26] and in [32], where such
structures are named pseudo-fields. Implicitly Q0 also occurs in [29].

Several definitions of the class of meadows can be given, for instance mead-
ows constitute the smallest variety (i.e. class of algebras that satisfy an equa-
tional first order theory) which includes the commutative rings expanded with
an inverse operator that satisfies: 0−1 = 0 and ∀x(x = 0 ∨ x · x−1 = 1).

Yet another way to focus on meadows is to work in the signature of unital
rings expanded with an inverse operation such that 0−1 = 0 and to adopt the
following additional proof rule IRm (inverse rule for involutive meadows) for
(conditional) equational logic (E is a collection of equations and or conditional
equations) :

E ` x = 0→ t = r, E ` x · x−1 = 1→ t = r

E ` t = r
IRm
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3.1.2 Meadows of rational numbers with divisive notation

Q̂d
0 is the meadow of rational numbers with divisive notation which results from

Q̂0 by first applying an enrichment with x/y = x·y−1 and subsequently applying
a reduction by forgetting the inverse function. One may consult [8] for more
information on the connections between inversive notation and divisive notation,
and for an initial algebra specification of Qd

0 which avoids the detour with the
inverse function. The additional proof rule (now referred to as IRd

m) reads:

E ` x = 0→ t = r, x/x = 1→ t = r

E ` t = r
IRd

m

3.1.3 Common meadows of rational numbers

Q̂d
⊥ is a common meadow of rational numbers with divisive notation. The

domain of this structure extends that of Q̂ with (0, 0) which serves as the in-
tepretetaion of the constant ⊥ and which represents the result of dividing by
zero (i.e. x/0 = ⊥). (0, 0) is an absorptive element in the algebra (so that

x + ⊥ = x · ⊥ = ⊥ holds in Q̂d
⊥). The signature of Q̂d

⊥ is Σurd,⊥ = Σurd ∪ {⊥}.
The (conditional) equational logic for common meadows results from adopting
the following additional rule IRd

cm

E ` x = 0→ t = r, x = ⊥ → t = r, x/x = 1→ t = r

E ` t = r
IRd

cm

Q̂⊥ is a common meadow with inversive notation. Common meadows as an
abstract datatype, are introduced in [10] where equations for common meadows
are given, named Mda with a, instead of ⊥ as the name for the absorptive
element. An initial algebra specification of Q⊥ is given in [11], where also an
independent construction is given of the initial algebra of Mda.

In [10] the symbol a is used for the absorptive element with the idea that the
latter notation is (would be) preferable if calculation with an absorptive element
is (hypothetically) put into practice, say in school arithmetic, while using ⊥ is
preferable in theoretical work which is not supposed to prepare for “end user”
application in a literal manner.

3.1.4 Wheels of rational numbers

Q̂d
∞,⊥ is a wheel of rational numbers with divisive notation. This structure

introduces in addition to (0, 0) an element (1, 0) which serves as unsigned infinity
(with the corresponding constant written ∞), the value of 1/0. Now both
(0, 1) · (1, 0) and (1, 0) + (1, 0) produce the absorptive element (0, 0), which also
results as the value of 0/0. For more information on wheels I refer to [37]
and [16].

An equational logic for wheels can be presented by adopting the following
additional rule IRd

w

E ` x = 0→ t = r, x = ⊥ → t = r, x =∞→ t = r, x/x = 1→ t = r

E ` t = r
IRd

w
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3.1.5 Transrational numbers

Q̂d
±∞,Φ is an arithmetical datatype for transrationals with divisive notation.

This arithmetical datatype extends Q̂ with two elements which will play the role
of signed infinite values (1, 0) and (−1, 0), and enriches the resulting structure
with a division operator. For more information transrational arithmetic I refer
to [1] and [19] and the papers cited therein.

In the setting of transrational arithmetic and transreals ([19]) instead of ⊥
the symbol Φ is used for the unique absorptive element. Following [2], Φ is
used below in case positive and negative infinite values are both present and are
distinguished, which is the case in transrationals and transreals, while ⊥ is used
in the case of a single infinite element (as in wheels), and also in the presence of
an absorptive element in the absence of infinite values. A dedicated proof rule
is as follows, writing e for t = r: IRd

tr

E ` x = 0→ e, x = Φ→ e, x =∞→ e, x = −∞→ e, x/x = 1→ e

E ` e
IRd

tr

3.1.6 True fractions

In [12] the notion of a true fraction is proposed, which refers to elements arith-
metical datatypes in which different though equivalent common fracterms have
different interpretations. Datatypes with true fractions are complicated struc-
tures which, for that reason are unlikely candidates for being used for educa-
tional purposes.

3.2 Focus on Qd
⊥: common meadows of rational numbers

From the structures listed above I consider the abstract arithmetical datatype
Qd
⊥, to be the most appropriate one as a basis for the description and analysis

of elementary arithmetic in an educational setting.
Qd
⊥ models an understanding of division as a partial function, while tech-

nically working with total functions, especially when reading t = ⊥ as “t is
undefined”, or as “t has no proper value”.

The choice for Q̂d
⊥ as a particular arithmetical datatype within Qd

⊥ is made
for the purposes of this paper only. This choice embodies an important degree
of freedom for the analysis of elementary arithmetic, and different choices may
serve different purposes in that area. Providing a systematic survey of common
meadows of rational numbers is left for further work.

Technically the arithmetical datatype Q̂d
0 may equally well be used in the

context of elementary arithmetic, but the somewhat controversial assumption
that 1/0 = 0 lacks sufficient justification at an elementary level. Advantages
of working with involutive meadows (and thereby assuming 1/0 = 0 when us-
ing divisive notation) may appear primarily in two ways: (i) when developing
theoretical work on formal systems involutive meadows are simpler to deal with
than its alternatives, and (ii) when working on applications expressions and
equations may be kept simpler. In rare cases the choice of 0 as a value of 1/0
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matches with the intuitions in the setting at hand, but such cases are somehow
accidental, and therefore do not, in my view, provide significant arguments for
setting 1/0 equal to 0. In this matter I disagree with the views that underly [29],
where it is claimed that taking 0 as the value of 1/0 is preferable to other choices
on mathematical grounds, that is because it provides the best fit with relevant
parts of mathematics.

If a conceptually more sophisticated alternative is sought for Q̂d
⊥ serving as

a basis for work on elementary arithtmetic then wheels of rational numbers, i.e.
the abstract arithmetical datatype Qd

∞,⊥ provides a plausible candidate. In [16]
a more elegant and more generally applicable construction for specific algebras
in this abstract datatype than the datatype Q̂d

∞,⊥ as defined above is presented.

Q̂d
±∞,Φ becomes relevant in diverse circumstances: (a) if close proximity to

computer arithmetic matters, (b) if an application requires and ordering on
symbolic values, (c) in applications involving reals, topology, and analysis.

3.2.1 Decimal notation

It is plausible to introduce all decimal digit sequences without redundant lead-
ing zeros as constants and to provide algebraic specifications for naturals and
integers consisting of an infinite number of (conditional) equations which are
generated by substitution of constants in a finite number of schemes. Such
specifications can be combined without any problem with conventional alge-
braic specifications of rings, meadows, and common meadows.

I write CD for the collection of all non-empty digit sequences different from
0 without leading zeros. For instance 70553 ∈ CD. With u = 7055 ∈ CD one
may write u3 for 70553. The decomposition of an element w of CD with two
or more characters into w ≡ ud with u ∈ CD and d ∈ {0, . . . , 9} will be used
extensively. Now for instance 752 is a constant which can be made up from 7
by first postfixing 5 and the 2.

CD is considered the collection of positive natural numbers, or rather of pos-
itive decimal natural numbers. The algebra Q̂d

⊥,CD
results from Q̂d

⊥ by including
each σ ∈ CD in the signature (which already contains 0 and 1) and by choosing
as the interpretation for σ ∈ CD the pair (σ, 1). An algebraic specification of
the abstract datatype Qd

⊥,CD
is given in table 1.

The specification in table 1 is found by combining (i) the specification of
common meadows of [10] (though writing ⊥ instead of a) with (ii) an explicit
definition of division in terms of the inverse function (x/y = x · y−1), (iii) an
axiom scheme (u/u = 1 for u ∈ CD) which captures the requirement that the
characteristic is zero, in the light of the fact that elements of CD are supposed to
represent nonzero decimal natural numbers, and (iv) a specification of decimal
numbers by means of an infinite set of equations which consists of ten equations
for the successor of digits and an equation scheme which specifies the value of
ud in terms of the values of u and of d. In this specification inverse merely
serves as an auxiliary function. Following [11] the axiom scheme u/u = 1 may
be replaced by the single axiom (x2 + y2 + 1)/(x2 + y2 + 1) = 1 + 0 · (x + y).
Following [8], the use of inversive notation can be avoided. I have not done so
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in the presentation of the axioms in order to keep the relation with equational
axiom systems in [10] transparent.

By having constants for all decimal natural numbers, for natural numbers
at least, no distinction between syntax and semantics is made, and say 173
considered a natural number rather than merely a notation for a natural number.

So one works with decimal natural numbers rather than with natural num-
bers, with the understanding that binary numbers and hexadecimal numbers
are other entities, which however may have the same value as decimal numbers.
Importantly stating that two entities having the same value is admissible even
if no collection of values has been defined. “Having the same value” is merely a
way of indicating a certain equivalence relation. It should be noticed that the
decimal notation cannot simply be mixed with, say, binary notation. Indeed
table 1 asserts 10 = 9 + 1 which will not hold for binary natural numbers where
10 = 1 + 1 instead.

Whole decimal numbers extend decimal natural numbers with signed enti-
ties, except for 0 which is unsigned. Below I will work with decimal wholes with
the understanding these are signed digit sequences without redundant leading
zeroes, and I will in most cases speak of wholes, (natural numbers, integers etc.)
without labelling these explicitly as decimal.

This identification of non-negative whole numbers with decimal sequences
may, but need not, be made. It is an instance of association as suggested by
Nicaud et. al. in [31]. Below I will assume that on decimal whole numbers an
ordering < is present.

3.2.2 Schematic equations

An equation t(u, v) = r(u, v) involving, say, two meta-variables u and v rep-
resents a schematic equation which abbreviates the following set of equations
{t(σ, σ′) = r(σ, σ′)|σ, σ′ ∈ CD}. Similarly a schematic conditional equation
t1(u, v) = r1(u, v) ∧ · · · ∧ tn(u, v) = rn(u, v) → t(u, v) = r(u, v) represents the
collection of its substitutions instances for all σ, σ′ ∈ CD. An equation of the
form t(d, u) = r(d, u) for d ∈ {0, . . . , 8} stands for a collection of 9 schematic
equations: t(0, u) = r(0, u), . . . , t(8, u) = r(8, u). Let (ΣCD

, E) be a (conditional)
equational specification consisting of finitely many schemes, then Mod(ΣCD

, E)
has a semi-computable initial algebra.

Disadvantages of replacing schematic (conditional) equations by the addi-
tional syntax as described are these: (a) unless conventions (vi) and (vii) are
ignored a non-trivial exposition about type inference must precede the use of
this form of specification, (b) a conditional equation (i(x) = i(y)→ x = y) en-
ters the picture which is not usable as a rewrite rule, (c) working with schemes
and metavariables over CD mimics a subsort rather than an additional sort. The
idea that CD constitutes a subsort of V is closer to the intuition than that it
constitutes an additional sort with elements that must be copied into V .

The device of schematic equations may be understood as one of several
methods to avoid the use of a subsort, thereby avoiding the well-known and
non-trivial complications of equational logic in the presence of subsorts. The
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(x+ y) + z = x+ (y + z) (1)

x+ y = y + x (2)

x+ 0 = x (3)

x+ (−x) = 0 · x (4)

(x · y) · z = x · (y · z) (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = x · y + x · z (8)

−(−x) = x (9)

0 · (x · x) = x (10)

(x−1)−1 = x+ 0 · x−1 (11)

x · x−1 = 1 + 0 · x−1 (12)

(x · y)−1 = x−1 · y−1 (13)

1−1 = 1 (14)

0−1 = ⊥ (15)

x+⊥ = ⊥ (16)

x/y = x · y−1 (17)

u/u = 1 (foru ∈ CD) (18)

1 + 1 = 2 (19)

2 + 1 = 3 (20)

3 + 1 = 4 (21)

4 + 1 = 5 (22)

5 + 1 = 6 (23)

6 + 1 = 7 (24)

7 + 1 = 8 (25)

8 + 1 = 9 (26)

9 + 1 = 10 (27)

ud = 10 · u+ d (for d ∈ {0, . . . , 9}, u ∈ CD) (28)

Table 1: CMd
CD

: an initial algebra specification of the abstract datatype Qd
⊥,CD

using inverse as an auxiliary function
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motivation for this preference for infinite signatures and schemes is that, in
contrast with the use of subsorts, working with infinite signatures and infinite
sets of (conditional) equations requires no significant adaptations of the theory
of algebraic specifications.

3.2.3 The arithmetical abstract datatype Qd
⊥,CD

Having available decimal number constants the datatype Q̂d
⊥ can be expanded

to include constants in CD by merely providing the interpretation (u, 1) for con-

stant u. This expansion creates the arithmetical datatype Q̂d
⊥,CD

, and the corre-

sponding arithmetical abstract datatype Qd
⊥,CD

For applications in elementary

arithmetic the abstract arithmetical datatype Qd
⊥,CD

constitutes a a plausible

basis for further investigation. An algebraic specification for it is { −1}∆CMd
CD

with ∆ the module algebra hiding operator (see [7]), and CMd
CD

the specifica-

tion of table 1. The specification { −1}∆CMd
CD

is logically equivalent (≡fol in
terms of module algebra) with the specification CM + χ = 0 from [10]. For a
field K the common meadow K⊥ is defined by adding a new element ⊥ to its
domain, introducing division so that 1/0 = ⊥ and assuming that addition and
multiplication are strict on ⊥. Each algebra of the form K⊥ can be equipped
with interpretations for the constants CD so that it satisfies { −1}∆CMd

CD
and

moreover (the basis theorem from [10]) each equation that is valid in all K⊥ is
derivable from { −1}∆CMd

CD
.

3.2.4 Datatypes in the abstract datatype Qd
⊥,CD

Returning to the datatype Q̂d
⊥,CD

one may notice that [[2]] = (2, 1) introduces an

unnecessary overhead. Choosing a different datatype in Qd
⊥,CD

may overcome
that disadvantage.

The datatype Q̃d
⊥,CD

∼= Q̂d
⊥,CD

is obtained from Q̂d
⊥,CD

by means of the fol-
lowing transformation, in fact a homomorphism, of its elements:

• (0, 0)→ ⊥,

• (0, 1)→ 0,

• (u, 1)→ u,

• (−u, 1)→ −u,

• (u, v)→ u/v for v 6= 1,

• (−u, v)→ −u/v for v 6= 1.

Q̃d
⊥,CD

i,s just as Q̂d
⊥,CD

, merely one of many arithmetical datatypes which im-

plement (i.e. are a member of) the abstract datatype Qd
⊥,CD

.
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Another construction for a datatype in Qd
⊥,CD

is results form the unique
congruence ≡⊥ on TΣurd,CD,⊥ (the closed terms for signature Σurd,CD,⊥) for which

TΣurd,CD,⊥/ ≡⊥∼= Q̂d
⊥,CD

.
Yet another option is to have the domain of the datatype consisting of

equivalence classes [(n,m)]≡ (n,m ∈ Z,m > 0) of the equivalence relation
[n,m] ≡ [z, b] ⇐⇒ n · b = m · a, augmented with {(1, 0)} as the interpretation
of ⊥.

4 Fracterms and fracterm related terminology

Fracterms were introduced as a class of expressions in [2]. The notion of a
fracterm admits a reasonably clear definition as stated in definition 8 below.
Loose ends of this definition relate to variation in the notion of an arithmetical
signature as well as in the flexibility in the precise syntax of terms one prefers
to adopt.

Definition 8. A fracterm is a finite expression over an arithmetical signature
(with division) with the division operator as its leading function symbol.

A fracterm may contain variables x, y, z, .. ranging over the domain V (so-
called ordinary variables), as well as metavariables u, v, w, .. for decimal number
constants (elements of CD if CD is part of the signature) and postfix extended
metavariables (e.g u7, v08 and w112).

Definition 9. A fracterm is closed if it contains no variables and no metavari-
ables, otherwise it is non-closed. A fracterm is half-closed if it contains no
ordinary variables.

Open fracterms are just fracterms, though with the attribute open one indi-
cates that the fracterm might contain one or more variables. Half-open fracterms
may contain zero or more metavariables and postfix extended metavariables.
This aspect of the terminology only matters if meta-variables for fracterms (or
for components of fracterms) are used.

In the presence of different notations for division the same fracterm may
be written in different ways: 2+1

3+5 and (2 + 1)/(3 + 5) will be considered the
same fracterms. Stated differently, different fracsigns may represent the same
fracterms.

Remarkably the notion of a fracterm is trivial and problematic at the same
time. The existence of fracterms is self-evident once signatures including a
division operator are taken for granted. However, in the absence of syntactic
considerations the notion of a fracterm becomes less obvious. Nevertheless I
suggest that the notion of a fracterm, as well as the word fracterm for denoting
such expressions be included in the language of elementary mathematics, where
both the notion, which evidently exists without being named, and its name
(fracterm) may serve a useful purpose in clarifying the concept of a fraction.
In this paper I will only discuss fracterms and I will leave an investigation of
fractions for future work.
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4.1 Fracterms versus fractions

One might object to the introduction of fracterms as additional terminology by
claiming fracterms are just fractions, but that is not the case. The essential
observation is that in mathematical use, and for a significant “fraction” of the
educational literature, a fraction is a number, a value, i.e. an unstructured
entity. I see no virtue in providing a definition of fractions which excludes the
latter use of the term “fraction”, as if that were wrong after all, and instead I
propose to speak of fracterms which are definitely not numbers, if structured
entities with a numerator and a denominator are meant.

4.2 Terminology for fracterms

I will now provide an adaptation to fracterms of the traditional terminology re-
garding fractions. The fraction terminology which I take as the point of depar-
ture includes: common fraction, (equivalently simple fraction, vulgar fraction),
unit fraction, proper fraction, improper fraction, simplified fraction, fraction
equivalence, fraction simplification, pseudo fraction (from the German Schein-
bruch), composite fraction, like fractions, and mixed fraction. These notions,
understood as predicates on fractions, are not easy to define in a precise man-
ner because of dependency on the meaning of fraction, because fractions are
not easy to define. Replacing fraction by fracterm, and assuming evaluation of
expressions in a common meadow, a new list of phrases results each of which
can be given a precise definition.

In addition to the notions inherited from fraction terminology the following
fracterm related phrases are defined: quotient, problem fracterm, regular frac-
term, fraction addition, resulterm, and simplified resulterm. Assuming charac-
teristic zero the following elements of fracterm terminology are reasonable:

1. A wholeterm is a term over the signature of rings.

(A wholeterm may be open or closed.)

2. For a closed fracterm P/Q the value of P/Q in Q̂d
⊥,CD

is called the quotient
of P and Q (also referred to as the quotient of the fracterm P/Q).

3. The numerator of a fracterm P/Q is P .

(Each fracterm has a unique numerator.)

4. The denominator of a fracterm P/Q is Q.

(Each fracterm has a unique denominator.)

5. A singular fracterm is a fracterm P/Q with the property that Q̂d
⊥,CD

|=
Q = 0.

The archetypical singular fracterm is 1/0. (2+3)/((4−5)+1) is a singular
fracterm. 1/(x− x) is an open singular fracterm.
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6. A fracterm is regular if it is not a singular fracterm and it has no singular
fracterm as a subterm.

7. A fracterm is irregular if it is not regular.

8. A common fracterm (alternatively called simple fracterm or vulgar frac-
term) is a closed fracterm of the form P/Q where P and Q are elements
of CD and Q is nonzero.

(A common fracterm is regular by definition.)

9. A fracterm which is not common is uncommon.

10. A half-open common fracterm is a closed fracterm of the form P/Q where
P and Q are 0 or are elements of CD, or metavariables for CD or postfix
extended metavariables for CD, with Q nonzero.

Examples: 17/u2, u16/v554, u/v61, u/2, u/v.

(A half-open common fracterm is regular by definition.)

11. A negated common fracterm is an expression of the form −(P/Q) with
P/Q a common fracterm. (A negated fracterm is not a fracterm.)

12. An integer fracpair is a regular closed fracterm P/Q such that P is in CD

or in −CD and Q is in CD.

(So (−2)/3 is an integer fracpair while it is not a common fracterm and
neither is it a negated common fracterm; −2/3 is a negated common
fracterm, not a fracterm, with the same value as (−2)/3. Integer fracpairs
are studied in detail in [11], and in a different manner in the theory of
wheels ([37], [16]).)

13. A half-open integer fracpair is like an integer fracpair but now the numer-
ator may also be a signed metavariable or a postfixed metavariable and
the denominator may be a metavariable or a postfixed metavariable.

14. A rational fracpair is a closed fracterm P/Q. Two rational fracpairs P/Q
and R/S are the same P/Q ≡rfp R/S if P = R and Q = S. For instance
2/3 6≡rfp 4/6 and 2/3 ≡rfp (4/2)/(6/2).

15. Two common fracterms P/Q and R/S are equivalent if P · S = Q ·R.

Equivalent fracterms are equal (i.e. have the same value) and there is
no other notation for fracterm equivalence than the equality sign, P/Q =
R/S, which expresses about two fracterms just “having the same value”
(“having the same quotient”), which is the intended meaning of equiva-
lence.

The relation between fracterm equivalence and fracterm equality is tricky.
The idea is as follows: (i) that two fracterms which are not the same may
be equivalent, (ii) fracterm equivalence can be defined without making
use of the notion of the value of a fracterm, (iii) after some preparations
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it may be concluded that calling equivalent fracterms equal works in the
same way as asserting that 2 + 2 = 1 + 3. Both sides have the same
value, but are not the same expressions (sumterms), (iv) for quotients the
distinction between sameness and equality is not made, quotients being
values.

16. Fracterm equivalence extends to half-open common fracterms, in which
case the condition P · S = Q · R amounts to a universal quantification
over all instances of both sides when substituting decimal numbers for the
respective metavariables. The validity of such identities is decidable.

17. Two common fracterms P/Q and R/S are the same (written P ≡ Q) if
P ≡ R and Q ≡ S.

18. A proper fracterm is a common fracterm for which the numerator is smaller
than the denominator.

19. A unit fracterm is a proper fracterm for which the numerator equals 1.

20. A fracterm is improper if it is common and not proper.

21. A pseudo fracterm (Scheinbruch in German) is a common fracterm of
which the value of the numerator is a multiple of the value of denominator.

22. A fracterm P/Q is composite if either P or Q (or both) contains an oc-
currence of division.

23. A fracterm P/Q is simplified if it is common and moveover gcd(P,Q) = 1.

24. A common fracterm P/Q allows simplification if it is not simplified.

25. A fracterm P/Q is flat if both P and Q are expressions over the signature
of rings.

(A flat fracterm is a non-composite fracterm. In [9] simple fraction is
used instead of flat fraction under the assumption that no confusion with
making reference to fraction simplification arises, but were I will comply
to the convention that a simple fraction has no free variables.)

26. A flat (non-common) fracterm P/Q allows simplification if for some whole
number k 6= 0, 1 P and Q are product expressions both having k as a
factor.

(This definition is at the border of informality as no definition of product
expressions will be provided. It is plausible to require that in product
expressions redundant brackets are removed while assuming association
of multiplication to the right.)

27. A common fracterm P/Q is a simplification of fracterm R/S if R/S is a
common fracterm, both fracterms are equivalent, and Q < S.
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28. A negated common fracterm −(P/Q) is a simplification of negated com-
mon fracterm −(R/S) if the fracterms P/Q and R/S are equivalent, and
Q < S.

29. A whole n is the simplification of the common fracterm P/Q if P = n ·Q.

30. Two fracterms P/Q and R/S have a common denominator (are like) if
Q and S are the same. (Thus 2/(1 + 1) and (1 + 1)/(1 + 1) are like but
(1 + 1)/2 and (1 + 1)/(1 + 1) are unlike (i.e. not like).)

31. For fracterms P/Q and R/S the task of addition consists of finding a
fracterm U/V such that P/Q+R/S = U/V .

(It is customary that addition of flat fracterms results in a flat fracterm and
that addition of closed fracterms results in a closed fracterm. Addition
of fracterms is not a function on pairs of fracterms, it is a function on
quotients instead).

32. Viewed as a transformation on pairs of fracterms addition is a nondeter-
ministic function (that is a relation, sometimes also called a multivalued
function) and it is not a function.

Addition of fracterms satisfies P/Q + R/S = (P · S + Q · R)/(Q · S)
without any restriction on R or on S. However, it is not the case that
P/Q+R/S ≡ T/U for any fracterm T/U .

33. The most well-known rule of calculation for fracterms is the so-called
quasi-cardinality rule (QCR) which indicates how to add two like com-
mon fracterms thereby obtaining a flat (but uncommon) fracterm with
the same denominator. Quasi cardinality rule is a phrase ascribed to
Griesel [23] in Padberg [33]. QCR may be formulated as an arithmetical
fact with variables P,Q,R ranging over integers, with R non-zero.

Proposition 4.1. The sum α+β of two like common fracterms α ≡ P/R
and β ≡ Q/R has the same value as the flat fracterm (P + Q)/R. In
equational form: P/R+Q/R = (P +Q)/R.

34. Simplification of an uncommon fracterm amounts to the simplification one
or of both of its components: thus the expression (7 + (3 + (4 + 0)))/2 can
be simplified by calculating its numerator thus yielding 14/2.

Simplification of an expression does not necessarily produce a “simplified
expression” according to some definition of being simplified. If a notion
of calculation is given and P can be calculated (evaluated by way of cal-
culation) to P ′ then the fracterm P/Q can be calculated to P ′/Q.

35. A fracterm can be simplified if either it is a common fracterm and it can
be simplified on the basis of item 24 or it is an uncommon fracterm and
it can be simplified on the basis of item 34.
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36. A mixed fracterm is a closed expression of the form P Q/R where P
is a nonzero natural number (expression) in decimal notation without
redundant leading zeros and where P/Q is a common fracterm.

The value of mixed fracterms is determined as follows: if P is a decimal
natural number then P Q/R = P + Q/R, and if P ≡ −P ′ with P ′ a
decimal natural number then P Q/R = P −Q/R.

A mixed common fracterm is not a fracterm. A mixed fracterm is an
instance of a molecular term, that is a combination of components, each
of which are required to be certain terms, that is to have a specific form.

Another instance of molecular forms are decimal numbers which take the
form P,QR with P a decimal whole, Q a list of zero or more zeroes, and
R a decimal natural number. For instance −17, 00350 with P ≡ −17,
Q ≡ 00, and R ≡ 350.

4.3 Fracterms over a larger signature

One may enrich the signature, and contemplate fracterms in the larger signature.
I will consider the case that the signature is enriched with a successor function
S( ):V → V . Adaptations to the enriched signature are a matter of design.
Here is a proposal on how that can be done:

1. S(0)/(1 + S(34)) is a fracterm with numerator S(0) and denominator
1 + S(34).

2. Wholeterms may also involve S( ). For instance S(17 + (3 · S(5)) is a
wholeterm. This is a matter of choice motivated by the idea that the
successor is supposed to turn integers into integers.

3. S(u7)/2 is a half-open fracterm.

4. Common fracterms do not contain occurrences of S (The idea is that
the numerator and the denominator of a common fracterm have been
calculated, and for that reason cannot be calculated any further.)

5. Unless stated otherwise the notion of a desirable outcome is such that
there are no occurrences of S( ) in desirable outcomes.

6. A flat fracterm my contain occurrences of S is the nominator as well as in
the denominator. S(1/2)/3 is a composite fracterm and is not a not flat
fracterm.

4.4 Arithmetical quantities, a container class for fracterms

It is plausible to ask what kind of thing is a fracterm. Are fracterms instances of
some other more inclusive type? The obvious answer is that fracterms are terms,
or expressions if one so prefers. This reply, however, has an implicit syntactic
bias which I prefer to avoid. I prefer to use arithmetical quantity (AQ) as the
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name of a container class for fracterms. The idea is that 2 + 7, 31 · 56 − 2 · 3
etc. are AQs, and if P and Q are AQs then so is P/Q. AQs of the form P/Q
are fracterms.

Unlike syntactic notions in theoretical computer science, however, AQ is still
an informal notion. For instance one may hold that 7+3+5 is an AQ consisting
of three components and at the same time be uncommitted on whether or not
7 + (3 + 5) and 7 + 3 + (5) are AQs. In other words AQs don’t necessarily come
with a fully worked out sytnax.

5 Fracterms applied to the fraction definition
problem

One may think that a fraction is just a fracterm, and that therefore the word
“fracterm” is superfluous. However, taking fractions for fracterms constitutes
just one of many possible different definitions of a fraction. As a consequence
of the existence of a plurality of definitions of fractions it is counterproductive
to equate fracterms with fractions, thereby obscuring the existence of different
definitions of fractions. In order to see the existence of a plurality of notions of
fraction it is useful to notice that in many mathematical works fraction is rather
used as a synonym for quotient. That diverges sharply from taking a fraction
for a fracterm.

For expositions on fractions from an educational viewpoint I mention [27],
and [33]. In [2] many other references to educational research papers on frac-
tions can be found. The presence of different views on the ontology of fractions
clearly emerges from these documents.

I will distinguish two kinds of fraction definitions: implicit definitions, and
explicit definitions. Explicit definitions are given in the presence of the notion
of a fracterm, and may make use of fracterms. Below I will only consider
explicit definitions of fractions which identify fractions with a type (i.e. subset)
of fracterms. I will merely mention the existence of other explicit definitions
of fractions. Implicit definitions are semantic indications about the meaning of
fraction which emerge from patterns of use of the word “fraction” in various
texts.

5.1 The fraction definition problem

I prefer to think in terms of the existence of a “fraction definition problem”, that
is the problem of how to define a fraction. Each educational work on fractions
must to some extent confront this problem, and each author of such works is
likely to have an opinion about it, whether or not such opinions are mentioned
in the resulting works. Solutions may range from (i) claiming nonexistence of
the problem, via (ii) claiming that defining fractions is like defining proofs, a
matter for advanced (higher) mathematics (or logic) which need not be reflected
upon at an elementary level, and (iii) various suggestions for fraction definitions
that hardly qualify as such, to (v) detailed proposals for fraction definitions.
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Below I will, as an application of fracterms discuss several possible definitions
of fractions, that is several potential solutions of the fraction definition problem.

5.2 The relevance of “fracterm” as a novel concept

One may dispute that fracterms are novel, and one may dispute as well that
the introduction of fracterms is useful. Fracterms are novel only in as much as
these are meant to serve as first class citizens in actual expositions of elementary
mathematics.

Then one may think that the introduction of fracterms merely constitutes a
marginal addition to the well-known framework of elementary arithmetic. But
that this is not the case, because syntactic notions are remote from conventional
mathematical presentation. At present it is not even obvious that it is feasible to
incorporate in a natural and productive manner, a syntactic notion like fracterm
within a framework for ordinary elementary mathematics.

The possibility to provide a well-defined terminology for fracterms serves as
a justification for very introduction of the notion. Providing similar definitions
for fractions without having a definition of fractions at hand is not possible.
The simplest (though unconventional) definition of a fraction is that a fraction
is a fracterm.

One may think that it is preferable to commit to a precise notion of a fraction
before introducing additional notions such as fracterm and fracsign. However,
the idea is that not so much the selection of a specific definition of fractions
is relevant but rather giving an explanation of the existence of a plurality of
notions of fraction. Moreover it is conceivable that different notions of fraction
each have advantages in different circumstances so that making a choice for
a definition of fractions for once and for all is impractical, and may even be
counterproductive.

Arithmetical datatypes come with a theory of fracterms. The difference
between the various arithmetical datatypes when judged from the perspective
of the respective fracterm theories is significant. For instance: in Q̂d

⊥ each

expression (open or closed) is equivalent to a flat fraction (see [10]). In Q̂d
0

each expression equals a sum of flat fractions, and no bound on the number of
summands may be imposed (see [9]). For Q̂d

∞,⊥ no work on fracterm theory

is available, whereas as for Q̂d
±∞,Φ the corresponding fracterm theory has been

invesigated in [5].

5.3 Implicit definitions of fractions

An implicit definition of fractions provides a collection of patterns of use for the
word fraction from which a definition, be it an informal definition, may be ex-
tracted, where the extraction of a conceptual definition may even be performed
in different ways.

In principle there is no objection against working with an implicitly defined
notion of fraction and at the same time making use of the word fracterm, though
in practice that is not te be expected.
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Three examples of collections of assertions giving rise to an implicit definition
of fractions aregiven in the following Paragraphs:

5.3.1 A fraction is a kind of number

Besides examples of closed identities involving fracterms “fractions as a kind of
number” may come with these assertions:

(i) a fraction is a kind of number,
(ii) some but not all fractions are equal to a whole number,
(iii) fractions have a numerator and a denominator which are separated by

a horizontal bar,
(iv) addition of fractions is easy, just follow the rules,
(v) fraction equivalence is often considered a difficult notion, but that is

unnecessary,
(vi) mixed fractions are not really fractions, but composite fractions are.

5.3.2 A fraction is a numeral

Besides examples of closed identities involving fracterms “fractions as numerals”
(of which there are several different instances) may come with these assertions:

(i) a fraction is a numeral, a numeral is a value,
(ii) a fraction is a pair of numerals,
(iv) fractions can only be added if the denominators of both are the same,
(v) in order to understand fraction equality one must first understand frac-

tion equivalence,
(vi) the fraction (1+2)/7 is not simplified, but the fraction x/7 is simplified.

5.3.3 A fraction is an equivalence class

Besides examples of closed identities involving fracterms “fractions as equiva-
lence classes” (of which there are several different instances) may come with
these assertions:

(i) a fraction has three parts, a numerator, a denominator, and a fraction
bar,

(ii) later (but not now!) it wil be explained that a fraction is a set, technically
called an equivalence class, of notations for numbers,

(iii) one may think of a fraction as a number,
(iv) all fractions can be simplified, simplification is a method for computing

a fraction,
(v) the fraction x/y with different variables x and y cannot be written in a

simpler form.

5.4 Explicit definitions of fractions: fracterm type based
fraction definitions

One may contemplate the fracterm terminology as a scheme for generating a
fraction terminology for an arbitrary definition of fraction by simply replacing
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fracterm by fraction. However, if a fraction is considered a quotient, i.e. num-
ber, then a substantial part (fraction in another sense) of the terminology for
fracterms fails to apply because numbers have no numerator and no denomina-
tor. In fact the fracterm terminology is specific for the notion of fracterm and
also for the arithmetical datatype at hand (that is Q̃d

⊥,CD
) and deriving from

that terminology a terminology for a specific notion of fraction requires care
as well as the awareness that not all items of the terminology can be inherited.
Rather than surveying many conceptions of fractions two definitions of fractions
may be contrasted. A survey of notions of fraction can be found in [2].

5.4.1 A fraction is a fracterm

When fraction is understood (defined) as fracterm, the fracterm terminology
becomes the corresponding fraction terminology, simply by replacing fracterm
by fraction in each item in the description of the terminology. In addition the
keyword fracterm is made redundant as fraction can be used instead.

Working along these lines an adequate perspective of fractions results. A
disadvantage of taking fractions for fracterms is that this very idea is unfamiliar
to most teaching staff and is incompatible with many explanations of fractions
in educational methods and books.

5.4.2 A fraction is a quotient

If one takes a fraction to be a quotient, say in the arithmetical datatype Q̂d
⊥,CD

or in Q̃d
⊥,CD

then there is no notion of numerator or denominator for a fraction
and much of the fracterm terminology does not inherit to the specific case (of
fractions as quotients).

The idea of taking fracterms seriously as first class citizens in this case sug-
gest to maintain a notion of fracterm besides fraction (that is quotient), inclusive
the given fracterm terminology and to simply use fraction as a synonym of quo-
tient. If fractions are considered quotients then fraction terminology does away
with the following notions (which come about when simply replacing fracterm
by fraction in the terminology of Section 4): the quotient of a fraction, numer-
ator, denominator, problem fraction, regular fraction, common fraction (simple
fraction, vulgar fraction), negated common fraction, equivalence of fractions,
mixed fraction, composite fraction, simplified fraction, flat fraction, like frac-
tions, QCR as a rule for the addition of fractions, open versus closed fraction.

Only the following notions “survive”, that is can be inherited from fracterm
terminology to fraction terminology upon adopting the fractions a quotients
perspective: unit fraction, proper fraction, improper fraction, pseudo fraction
(i.e. an integer).
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5.4.3 A fraction is a pair of an arbitrary integer and a positive in-
teger

Conceiving a fraction as a pair of an arbitrary integer and a positive integer
corresponds to viewing a fraction as a common fracterm. Upon adopting that a
fraction is a pair of whole numbers, the second one being positive, many more
aspects of the fracterm terminology can be turned in to terminology for fractions.
In particular common (simple, vulgar) fractions exist, as well as the notions
of numerator, denominator, simplification, simplified fraction. The items of
fracterm terminology which have no counterpart if fractions are considered pairs
as mentioned are these: mixed fracterm, composite fracterm, and flat fracterm.

6 Fraction as an ambiguous noun

So, after these preparations one may ask once more: what is a fraction? If so
many different meanings can be given to the noun fraction, should the word be
given up and be replaced for something else? No, another path can be taken.

Claim 6.1. Fraction is an ambiguous noun, even when restricted to the context
of arithmetic. The meaning of the noun fraction includes as options: fracterm
(i.e. open fracterm), closed fracterm, integer fracpair, rational fracpair, and
rational number (fracvalue). This listing of options is not exhaustive, other
options may included (such as “fracterm or mixed fracterm”) and new options
may be be invented.

A major advantage of adopting Claim 6.1 is that unclear or self-contradictory
fragments of texts about fractions may be qualified as being sloppy with the
ambiguity of fraction. Most assertions about fractions can be easily made un-
ambiguous, precise, and valid, by writing in terms of the listed options for
“fraction”. By using open fracterm, closed fracterm, integer fracpair, rational
fracpair, and rational number (fracvalue) in places where fraction might have
been written a text may be disambiguated.

However, it is not always the case that working with disambiguated termi-
nology clarifies a text fragment: for instance the claim that “fractions can only
be added if the denominators are equal” appears every now and then in sketchy
explanations of fractions and I did not find any plausible analysis of the meaning
of this assertion in a disambiguated terminology which renders it true.

6.1 What kind of ambiguity covers fraction? Multi-bias
ambiguity

Sennet [36] provides a survey of occurrences of ambiguity. It is not obvious that
(arithmetic) fraction as having a range of different meanings is comprised by
the options for ambiguity as listed in [36]. I found no description of the form
of ambiguity which comes with the noun fraction and for that reason an ad hoc
name for such ambiguities will be suggested. I propose to consider the noun
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fraction to be multi-bias ambigious. Multi-bias ambiguity requires a definition.

A noun α is multi-bias ambiguous of the following conditions are met.

1. α can be disambiguated into α1, . . . , αn for some less ambiguous nouns
α1 . . . , αn. It may be the case that in certain cases yet different refinements
of α are needed, but then the idea is that disambiguation with the listed
αi covers the majority of cases.

2. Most users of the noun α have a partial ordering of preferences on the op-
tions αi for disambiguation. Many users may disambiguate α into a subset
of the listed options only. These preferences constitute a bias towards a
certain interpretation of α.

3. It is not uncommon for a user (say A) to be hostile to the very idea that
α is ambiguous and that another user, say B who maintains a different
bias about α consider A’s preferences for the meaning of α as biased.

4. Many users of the noun α are unaware of its ambiguity, and may use a
strong preference for one of the disambiguations, calling for another one
only in exceptional cases. (For instance many users of the noun fraction
may always consider a fraction to be a rational number, unless they need
to consider it an integer fracpair, whereas many other users of the same
noun may always consider it to be an integer fracpair only to consider it
a rational number when forced to do so in a certain context. Yet other
users may always think of an open fracterm.)

5. There is no generally adopted perspective on why it is practical or helpful
to group the disparate named notions α1 . . . , αn together as the different
interpretations for a single noun (in this case α).

7 Concluding remarks

Writing about fractions in a paradigm sensitive manner is less straightforward
than dealing with the different definitions of real numbers via say Dedekind cuts,
Cauchy sequences, and infinite decimal expansions. Unlike with the case of real
numbers, the different viewpoints on fractions cannot be so easily be grasped
in terms of a spectrum of different and well-known definitions. Currently there
is no catalogue available of competing definitions of fractions. Definitions of
fractions must be retrieved from thousands of texts about fractions in an indirect
manner.

Having a definition of rational numbers at hand does not trivialise the writing
on fractions. For instance the question whether or not “(1 + 2)/5” is a common
fraction is independent of an underlying definition of rational numbers. In this
connection one may consider the 3-th principle mentioned by Frege in [21] (p
xxii)
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... never to ask for the meaning of a word in isolation, but only in
the context of a proposition; ...

As a proposition one may consider: “the fractions 2/3 and 4/6 satisfy 2/3 =
4/6”, and one may assume that it is known what a rational number is, and in
that context the question arises: what is a fraction?

Frege discusses the definition of natural numbers and raises fundamental
questions about these. He writes (in 1848, see e.g. [21], introduction p. xv)
“The first prerequisite for learning anything is thus utterly lacking – I mean
the knowledge that we do not know.” Moreover he mentions the diversity and
disparity of (then) existing descriptions of natural numbers. I hold that both
motives apply nowadays to fractions and justify further inquiries into these.

The position that fractions are expressions can be recognized in [30]. In [38]
a fractions as fracpairs position is adopted, just as in [28]. In [35] the position
that fractions are numbers has been adopted. In [22] it is stated that fraction is
not a mathematical concept, thereby explaining why it has no well-known and
rigorous definition. A preliminary discussion of logics of fractions is reported
in [6] where paraconsistent logic comes into play.

Issues beyond mere equations between closed arithmetical quantities relate
to logics of fractions beyond equational. For instance consider the following
question:

Problem 7.1. What is the cardinality of the set {1/2, 2/4}?

It seems plausible to claim that for any view of fractions the answer to this
question is 1. Indeed, (i) the symbols 1/2 and 2/4, as occurring in the question,
are fracsigns, (ii) fracsigns allow polymorphic typing: either as a quotient or as
a fracterm or as something in between of these (which may in turn serve as a
reference to a quotient), (iii) the set theory notation context coerces the typing
of a fracsign (or at least of these particular fracsigns) into a quotient. If one
insists that a fracsign is read otherwise this must be somehow made clear in the
notation, e.g. by writing {. . .}ft for a set of fracterms so that #({1/2, 2/4}ft) = 2
(with #(v) denoting the cardinality of V )

A working hypothesis for further work on fractions I wish to put forward
the idea that the answer to the question “why is learning fraction arithmetic so
difficult”, as stated in [28] lies in part in the conceptual difficulties innate in the
concept of fraction. These difficulties are not even mentioned in [28].

Upon asking a mathematician what a fraction is, one may be pointed out
that a fraction is an equivalence class of entities (for some plausible definition
of equivalence), for instance pairs, each of which arise as the interpretation of a
fracsign as a structured entity. Then one may ask in response: “how to define
numerator and denominator”, and be pointed out that “in fact” fractions don’t
come with such components, that it is fraction expressions rather than fractions
which can be decomposed into a numerator, a denominator, and an operator
symbol. I hold that the latter viewpoint is quite distant from the conventions
in educational practice where it is more often than not assumed that fractions
allow a decomposition into the three familiar components. This gap must not be
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taken for granted. Leaving this gap unbridged is not helpful for the development
of methods for teaching arithmetic.

I propose that fracterm rather than (rational) number is considered the
principal notion of (rational) arithmetic, that is the notion which can be most
unambiguously defined. Rational numbers come about only when a semantic
model for fracterms is sought, and just as in computer programming, semantic
models for a given syntax are by no means unique. The suggestion that numbers
constitute a rigid and known world of entities which serve as the subject of
arithmetic is an illusion. On the contrary, fracterms are syntactic entities just
as programs are, and semantic models and objects are sought (and found) in
order to improve one’s understanding of the syntactic entities at hand. Semantic
models may be tuned in different ways towards specific applications in which
fracterms and other arithmetical quantities play a role.

Logic, and especially formal logic are at a distance from elementary mathe-
matics. In [18] it is argued that one of the advantages of working with formalized
logic is the side-effect of de-semantification. Using axiom based logic reasoning
is made less dependent on semantic intuitions. My objective, however, is to use
formal aspects, and in particular the formal methods as embodied in the theory
of (abstract) datatypes, as an additional tool for elementary mathematics in
such a manner that making semantic intuitions more remote is avoided.

Acknowledgement. The reviewer has made many useful suggestions includ-
ing the use of the adjective singular for fracterms with a denominator equal to
zero.
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