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Abstract

In transrational arithmetic each closed fraction may be written as a simple
fraction. It is shown that unlike in involutive meadows, in transrational
arithmetic open fractions cannot be written as a sum of simple fractions
(i.e. fractions the numerator and denominator of which are polynomials).
It is also not the case that each open fraction with a single variable can
be written as a mixed fraction.

1 Introduction

Different approaches to the issue of division by zero exist, a survey of such
options is presented in [4]. As it turns out different mechanisms to go about
1/0 result in quite different properties of the collection of fractions. With Qd

⊥, I
denote the common meadow of rational numbers, that is the rational numbers
with divisive notation (using division rather than inverse) with division made
total by returning an absorptive element, denoted with ⊥, when dividing by 0.
An absorptive value is often referred to as an error element in abstract datatype
theory with⊥ used as its preferred notation, while in transmathematics Φ is used
as the preferred notation for an absorptive value. The theory of fractions in Qd

⊥
is almost trivial as each expression (open or closed) can be written equivalently
in the form P/Q, with P and Q not involving division. P/Q is a so-called simple
fraction, so that simple fractions provide a universal format for open expressions
in the common meadow of rational numbers.

In the meadow of rational numbers Qd
0, that is the version of the rational

numbers with divisive notation where inverse is made total by adopting x/0 = 0
the situation is quite different. Working over Qd

0, each expression can be written
as a sum of simple fractions ([7]), but no bound on the number of summands
may be imposed ([10]), while univariate expressions may be transformed into
mixed fraction format ([6]). The question whether bivariate expressions can be
written in mixed fraction format is open in the case of Qd

0.
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The objective of this paper is to investigate the properties of fractions for
Qd
±∞,Φ, the arithmetical datatype of transrational numbers with divisive no-

tation. Definitions of the structure of transrational numbers date back to
around 2000. In [1] a structure corresponding to the transrationals as spec-
ified below is discussed with the exception that Table 1 of [1] indicates that
x/y = (−x)/(−y) holds in general, which we will not adopt, with the under-
standing that (−1)/(−0) = (−1)/0 = (−1) · (1/0) = (−1) ·∞ = −∞ 6=∞ = 1/0
thus maintaining the familiar identity x/y = x · (1/y). In [2] axioms for the
extension of transrational to transreals are listed. In [2] inversive notation is
used, that is only inverse appears and no mention is made of division. In the
absence of division, that is when working with inverse only, there is no discrep-
ancy about the definition of transrational arithmetic. Below we have taken the
liberty to work with division as defined by x/y = x · y−1 and by reading x−1 as
1/x. For a theory of fractions divisive notation is needed, and variations in the
definition of division, given a fixed inverse, impact on the resulting properties
of fractions.

We find that the picture concerning properties of fractions in transrational
arithmetic is significantly more complex than in the case of the meadow Qd

0. We
have obtained partial results only, however, as some key questions have been
left open. Transrational numbers combine the idea that 1/0 is not finite with
the idea that non-finite values are signed against the background that division is
total. Under these intuitively appealing constraints the design of the structure
of transrationals seems to have no plausible alternative. If only for that reason
Qd
±∞,Φ merits an effort of pure research.

In the setting of transrational arithmetic some transformations exist which
simplify fractions to a moderate extent, for instance:

x · x · x
x · x

=
x · x
x

,
x · x

x · x · x
=

x

x · x
,

1

x
+

1

1− x
=

1

x · (1− x)

The proof of these equations is immediate: only values x− 0,∞,−∞, 1 need to
be checked which is trivial for each of these equations.

As it turns out, we could not find any stronger and generally applicable trans-
formation for simplifying the structure of fractions in the context of Qd

±∞,Φ. We
leave open the question whether or not such transformations exist. In Section 3
we will introduce fraction depth as a complexity measure on fractions. Fraction
depth can be applied in any arithmetical datatype where it introduces a hier-
achy on fractions which may or may not be proper. We leave open the fraction
hierarchy problem (3.1 below) for transrational arithmetic.

1.1 Naturals and integers, assimilation and dis-assimilation

We assume that the set of natural numbers, |N|, and the set of integers, |Z|,
are known (given) as specific sets so that |N| ⊆ |Z|. In fact these sets serve
as parameters of the discussion. We have not fixed signatures for underlying
arithmetical datatypes N and Z, and we will use constants zero and one, and as
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functions addition, opposite, subtraction, multiplication, and greatest common
divisor.

Readers may already be worried about the notation used at this stage. Why
not use N instead of |N|? Following [3] (see also [17]) we will adopt the idea
that there is no such thing as “a natural number”. Instead of determining which
entities are natural numbers one may determine which structures are natural
number structures, and then choose a preferred candidate from a plurality of
options.

But at the same time, there is no such thing as “the signature of natural
numbers” which may reliably serve as a predetermined prerequisite for the iden-
tification of natural number structures and for the selection of a preferred one of
those. Determination of a signature for N is as much a matter of choice as is the
determination of the class of abstract entities which one intends to consider nat-
ural numbers. The idea of the notation used is that |N| is a fixed but arbitrary
choice of a countable infinite set, in some acceptable set theory, which serves
as the collection of natural numbers, and that N is an arithmetical datatype
the signature of which is arbitrary but fixed while including the constants and
functions mentioned above. Moreover and similarly |Z| is a chosen superset of
|N|. Further we do not distinguish between formal names of constants and func-
tions and the ordinary descriptions of these. Although assuming that 0 serves
as the zero in |N|, it is common practice in logic to have 0 as a constant in the
formal language about N so that 0 is the interpretation of 0. Unfortunately
the distinction between 0 and 0, however useful it may be in logic, constitutes
an unpleasant, if not unworkable overhead in ordinary mathematical practice.
For that reason we will do without 0 and we prefer to apply what is called
explicit assimilation in [20]: aware of the fact that a distinction between 0 and
0 might be made, the two are assimilated and the distinction is not made. If
it happens to be necessary to make a distinction between the two then explicit
dis-assimilation may take place. Dis-assimilation can go either way: to intro-
duce 0 as a formal counterpart of 0, or to consider 0 as a syntactic entity rather
than as a semantic entity and to introduce 0̂ as a semantic counterpart to the
0 being used.

Assimilation as applied in this case indicates that at the level of N and Z
no distinction between syntax and semantics is made. That is a choice which
may be reversed at any time. Further we refer to the collection of constants
and functions that are used for N and Z as a catalogue rather than a signature,
thereby indicating that no syntactic or semantic bias is supposed to be present.

1.2 Transrational arithmetic: fractions and flat forms

We assume that Q is chosen to be a specific instance of the isomorphism class of
ring of rational numbers, denoting with |Q| its domain. The domain of Q consists
of pairs (n,m) with, n an integer, m a positive integer, and gcd(n,m) = 1. The
constants 0 and 1 are identified with the pairs (0, 1) and (1, 1) respectively.

We have developed a description of transrational arithmetic, up to isomor-
phism, by means of a term rewrite system involving infinitely many auxiliary
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constants in [4]. These constants coincide with the pairs (n,m) mentioned
above. The transrationals may be characterised as the most plausible structure
which extends the domain |Q| of Q with positive infinity (∞) and negative in-
finity (−∞) and an entity called nullity (Φ) so that 1/0 =∞, 1/∞ = 1/(−∞) =
0,−(∞) = −∞, 0 · ∞ = 0 · (−∞) =∞+ (−∞) = Φ, where Φ serves as an error
value propagating through all operations (Φ + x = Φ · x = −Φ = Φ etc.) Now
|Q±∞,Φ| = |Q| ∪ {∞,−∞,Φ}. The elements of the domain of Q±∞,Φ which
are in the domain of Q are called rational values, the other three elements are
non-rational values. Non-rational values are to be distinguished from irrational
values such as

√
2 that may exist in an algebraic extension of the transrational

numbers.
Following [10] a fraction is defined as a particular kind of expression:

Definition 1.1. A fraction is an expression with division as the leading function
symbol, that is an expression of the form P/Q with P and Q expressions over
the signature of so-called divisive meadows (zero, one, plus, opposite, minus,
multiplication, division) or some extension thereof.

We mention that in the presence of inverse an expression of the form P−1

is not considered a fraction. For a fraction P/Q, P is called its numerator and
Q is called its denominator. The value of the fraction P/Q in an arithmetical
datatype is called the quotient of P and Q. And, by consequence, rather than
speaking of a field of fractions we prefer to speak of a field of quotients.

Definition 1.2. P/Q is a simple fraction if P and Q are not fractions and do
not have fractions as subterms.

Definition 1.3. A flat form is an expression which is not a fraction and which
has no fractions as subterms.

Thus a simple fraction is a fraction made up of two flat forms. In this paper
the signature of meadows ΣMd is extended with three constants: +∞, −∞, and
Φ, thus obtaining the signature of transrationals ΣMd,±∞,Φ. We will use P/Q
and P

Q as synonyms. Now one may view∞ as an abbreviation of 1/0, −∞ as an

abbreviation of (−1)/0, and Φ as an abbreviation of 0/0, but that perspective is
immaterial for a theory of fractions. Because ∞ is a constant the fraction 0/∞
is a simple fraction, whereas 0/(1/0) is not a simple fraction, in spite of the fact
that∞ = 1/0. It transpires that the presence of new constants for values which
can be expressed in terms of the signature of meadows is especially relevant
for the development of a theory of fractions. A fraction is closed if it contains
no variables, otherwise it is open. The following observation is an immediate
consequence of the definition of transrationals.

Proposition 1.1. For each closed expression t over signature ΣMd,±∞,Φ there
is a simple closed fraction P/Q over signature ΣMd,±∞,Φ such that Q±∞,Φ |=
t = P/Q. Moreover for this simple fraction it may be required that Q is made
up from one, addition and multiplication only (so that it can not be equal to 0,
∞, −∞ or Φ).
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The following fact is immediate by induction on the structure of flat forms.

Proposition 1.2. In transrational arithmetic any closed flat form P over sig-
nature ΣMd,±∞,Φ which contains ∞ as a subterm or contains −∞ as a subterm
has a value in {∞,−∞,Φ}.

We recall that Q0 is the structure obtained from the rational numbers (with
the signature of rings) by expanding the structure with inverse and division,
both made total in the simplest possible manner, by setting 1/0 = 0. Q0 is a
meadow, and as inverse is an involution in Q0 it is called an involutive meadow.
In [7] it is shown that in any meadow, in particular in Q0, each fraction can
be written as a sum of simple fractions. The same is not true, however, for
transrational arithmetic, and the proof of that fact is the main result of this
paper. The following immediate consequence of Proposition 1.1 will be used in
the sequel.

Proposition 1.3. Let R ≡ P1/Q1 + . . . + Pn/Qn be a sum of simple fractions
with variables among x1, . . . , xk. If, in transrational arithmetic, for each i ∈
{1, . . . , n} there are closed integer expressions hj , j 6= i, 1 ≤ j ≤ k such that
R(h1, . . . , hi−1,∞, hi+1, . . . , hk) 6∈ {∞,−∞,Φ} then for each i, 1 ≤ i ≤ k, Pi is
a closed flat expression not containing either of∞, −∞, or Φ as a subexpression.
In other words the Pi can be written as integer expressions over the signature
of rings (i.e. 0, 1, .,+,−).

Proof. For simplicity of notation we take k = 2, the other cases follow in the
same manner. Suppose otherwise, and assume that x1 occurs in Pi or that any of
∞,−∞ and of Φ occurs in Pi. We substitute∞ for x1 and we choose h2 as in the
statement of the Proposition. Substituting h2 for x2 we find with Proposition 1.1
that Pi(∞, h2) ∈ {∞,−∞,Φ}. As a consequence R(∞, h2) ∈ {∞,−∞,Φ}
which contradicts the assumption about h2 that R(∞, h2) 6∈ {∞,−∞,Φ}. The
argument for the case that x2 occurs in Pi(x1, x2) is symmetric.

2 Negative results on universality

A format for expressions is called universal relative to Q±∞,Φ if for each expres-
sion P there is an expression Q in the given format so that Q±∞,Φ |= P = Q.
We do not formally define the notion of a format for expressions, instead we
will merely consider some formats as examples. We focus on sums of simple
fractions because that is a universal format in the case of meadows. We will
first prove with two different examples that sums of simple fractions are not
universal for transrational arithmetic.

2.1 Sums of simple fractions are not universal

In this section we will prove that sums of simple fractions do not constitute
a universal format for open expressions of transrational arithmetic. The proof
carries over to transreal arithmetic without modification.
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Theorem 2.1. Consider the following fraction P

P =
1

1
x + 1

y

There is no expression R of the form R ≡ P1/Q1 + . . . + Pn/Qn with all Pi

and Qi flat forms such that Q±∞,Φ |= P = R. In other words, in the context of
transrational arithmetic, P cannot be written as a sum of simple fractions.

Proof. We notice that on non-Φ arguments P produces non-Φ values, in par-
ticular P (1,∞) = P (∞, 1) = 1/((0/∞) + (1/1)) = 1/(0 + 1) = 1, and also
P (1,−1) = P (∞,∞) = P (∞,−∞) = P (−∞,−∞) = ∞ and P (0, 0) = 0. We
assume that for all x, y ∈ |Q| ∪ {∞,−∞,Φ}, P (x, y) = R(x, y) with R(x, y) ≡
P1(x, y)/Q1(x, y) + . . . + Pn(x, y)/Qn(x, y) with the Pi and the Qi flat forms,
and from this assumption we will derive a contradiction. We first notice, using
Proposition 1.3 and P (1,∞) = P (∞, 1) = 1, that the Pi are closed flat forms
without occurrences of∞, −∞ and Φ, so that the Pi do not contain occurrences
of either x or y and can be written as integer expressions with 0, 1,+,− and ·.

Now consider Qi(x, y) with i ∈ {1, . . . , n}, we will perform a case distinction
on Qi(x, y) as to whether or not it is closed. First assume that Qi(x, y) is
a closed expression, then it is equal to some expression say t made up from
0, 1,+,−, ·,∞, and −∞. If Qi contains an occurrence of Φ the value of R(x, y)
is Φ for all substitutions and it can not be equal to R(x, y) for all transrational
values x and y. If Q±∞,Φ |= t = 0 then Pi/Qi is a closed term with a value
in {∞,−∞,Φ}. As a consequence the value of R(x, y) is in {∞,−∞,Φ} for all
substitutions for x and y, for instance x = y = 1/2. In the latter case, however
one finds P (1/2, 1/2) = 1 which therefore differs from R(1/2, 1/2). It follows
that t has a value different from 0, in which case Pi/Qi has a finite non-Φ value.

Now notice that at least one of the Qi(x, y) is not a closed flat form, as oth-
erwise R(x, y) is independent from its parameters x and y which is not the case
for P (x, y). Suppose that x or y (or both) occurs in Qi(x, y), then with Proposi-
tion 1.1 Qi(∞,∞) ∈ {∞,−∞,Φ}. And as Pi is a rational value Pi/Qi(∞,∞) ∈
{0,Φ}. The case Φ can be excluded, because otherwise R(∞,∞) = Φ which
differs from P (∞,∞) =∞ and it follows that Pi(∞,∞)/Qi(∞,∞) = 0.

Taking these observations together it turns out that R(∞,∞) equals a sum
of terms each with a rational value, which may differ from 0 in case Qi is closed,
and which must be equal to zero in case Qi is open. Therefore R(∞,∞) equals
a rational value which by necessity differs from P (∞,∞) =∞, a contradiction
which concludes the proof.

Proposition 2.1. Consider the following fraction P

P =
1

x
· 1

y

There is no expression R of the form R ≡ P1/Q1 + . . .+Pn/Qn with all Pi and
Qi flat forms such that Q±∞,Φ |= P = R.
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Proof. Assume that P = R ≡ P1/Q1 + . . . + Pn/Qn. Because P (1, 1) = 1 6= Φ
none of the Pi and Qi can contain Φ. Moreover because P (∞,∞) = 0, according
to Proposition 1.3 none of the Pi can contain ∞ or −∞ and none of the Pi can
contain x or y. It follows that the Pi are closed integer expressions. As all closed
fractions can be taken together into a single closed fraction we may assume that
only Pn/Qn is a closed fraction and the other fractions are open. Suppose for
some i ∈ [1, . . . , n− 1], Pi = 0, then we know that Qi(∞,∞) ∈ {∞,−∞,Φ} so
that Pi/Qi(∞,∞) = Φ and also R(∞,∞) = Φ which contradicts P (∞,∞) = 0.
Next we observe that for i < n either all Pi are positive or all Pi are negative.
Indeed if different signs occur, then, upon substituting ∞ for both variables,
and assuming that no denominator takes the value Φ the result is a sum which
includes a summand ∞ as well as a summand −∞ so that the sum equals Φ.
Suppose that all Pi are positive (the other case works in the same way), and
consider R(−1, 0). We find that R(−1, 0) equals a sum of summands which
are either rational values or ∞, as none of the summands can take value −∞.
Thus R(−1,∞) cannot be equal to P (−1, 0) = −∞ so that a contradiction is
obtained which concludes the proof.

The following result literally corresponds to a result (Thm. 14 in [10]) about
fractions in the meadow of rational numbers Q0 but the situation is rather
different in the transrational case and the proof below is quite different from
the proof given in [10] for the corresponding result concerning Q0.

Proposition 2.2. For all n > 0, for the expression Pn(x1, . . . , xn) ≡ 1/x1 +
· · ·+1/xn there is no expression Rn ≡ Q1/S1 + . . .+Qn−1/Sn−1 with flat forms
Qi and Si such that Q±∞,Φ |= Pn(x1, . . . , xn) = Rn(x1, . . . , xn).

Proof. Suppose that Pn(x1, . . . , xn) = 1/x1 + · · ·+ 1/xn = Rn(x1, . . . , xn) with
Rn ≡ Q1/S1 + . . .+Qn−1/Sn−1. We take 0 for the empty sum and then we may
assume that n > 1, because 1/x1 = R1(x) = 0 does not hold upon substituting 1
for x1. So let n > 1 be the smallest value for which a sum Rn with said shape and
properties can be found. We first notice that none of the Qi and Si may contain
Φ as a subterm, because Pn(∞, . . . ,∞) = 0 6= Φ. Further none of the Qi may
contain ∞ or −∞ as a subterm, because then Rn(∞, . . . ,∞) = 0 cannot hold
in view of Proposition 1.1. Further, using Proposition 1.3 we know that each
of the Qi is closed because Rn(∞, . . . ,∞) = P (∞, . . . ,∞) = 0 /∈ {∞,−∞,Φ}.
For some 1 ≤ i ≤ n − 1 it must be the case that xn occurs in Si, otherwise
Rn is independent from xn which is not the case for P and therefore cannot
be the case for Rn. Without loss of generality and perhaps after reordering the
summands of Rn we may assume that, xn occurs in Sn−1.

Substituting ∞ for xn we obtain Pn−1(x1, . . . , nn−1) = Pn(x1, . . . , nn−1,∞)
= Σn−2

i=1 (Qi/Si(x1, . . . , xn−1,∞)) + Qn−1/Sn−1(x1, . . . , xn−1,∞). Now using
Proposition 1.1 for all x1, . . . , xn−1, Sn−1(x1, . . . , xn−1,∞) ∈ {∞,−∞,Φ} from
which it follows that Pn−1/Sn−1(x1, . . . , xn−1,∞) ∈ {0,Φ} for all x1, . . . , xn−1,
and moreover the value Φ is found only if at least one of x1, . . . , xn−1 is set to
Φ. Each variable xj among x1, . . . , xn−1 must occur in at least one of the flat
forms S1, . . . , Sn−1 because otherwise for all non-Φ x1, . . . , xn−1, Σn−1

i=1 1/xi =
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Σn−2
i=1 (Qi/Si(x1, . . . , xn−1,∞)) while xj does not occur in the RHS, which is not

possible. Further, whenever, Qn−1/Sn−1(x1, . . . , xn−1,∞) takes value Φ that is
the case already for Σn−2

i=1 (Qi/Si(x1, . . . , xn−1,∞)) so that for all x1, . . . , xn−1

Pn−1(x1, . . . , xn−1) = Σn−1
i=1 1/xi = Σn−2

i=1 (Qi/Si(x1, . . . , xn−1,∞)) which con-
tradicts the minimality of n as chosen above thereby concluding the proof.

2.2 Mixed fractions are not universal for expressions with
a single variable

In [6] it is shown that in the meadow of rational numbers Qd
0 each expression

with a single variable can be written as a mixed fraction, that is a sum P +R/S
of a flat form P and a simple fraction R/S. A corresponding result does not
apply to transrational arithmetic, however. We will demonstrate two examples
of expressions with a single variable which cannot be written as a mixed fraction.
First consider another simplifying transformation for fractions, which is easily
checked.

Example 2.1.
1

x
+

1

1− x
=

1

x · (1− x)

Theorem 2.2. Consider the following expression P :

P =
1

x
− 1

1− x

There is no expression R of the form R ≡ Q + S/T where Q,S, and T are
flat forms, such that Q±∞,Φ |= P = R. In other words, in the context of
transrational arithmetic, P cannot be written as a mixed fraction.

Proof. To begin with we notice that it is not the case that transrational arith-
metic satisfies the equation (−x)/(−y) = x/y, and in particular (−1)/(−0) =
(−1) · ∞ = −∞ 6= ∞ = 1/0. This remark explains the difference with exam-
ple 2.1. Now suppose that P (x) = Q(x)+S(x)/T (x) with Q, S, and T flat forms.
If x occurs in P (x) then by Proposition 1.1 one finds that R(∞) ∈ {∞,−∞,Φ}
which contradicts P (∞) = 0. With Proposition 1.3 one finds that S(x) is closed.
So P (x) = q + s/T (x) where q and s are closed integer expressions in which
∞,−∞, and Φ do not occur. Now q + s/T (x) can only take the value ∞ or
take the value −∞ if T (x) = 0, so we find that both T (0) = 0 and T (1) = 0.
But then T (0) = T (1) and therefore P (1) = q + s/T (0) = q + s/T (1) = P (0).
This observation, however, contradicts the fact that P (0) =∞ and P (1) = −∞,
thereby completing the proof.

Theorem 2.3. Consider the following expression P :

P =
1

x
+

1

x− 1
+

1

x− 2

There is no expression R of the form R ≡ Q + S/T where Q, S, and T are
flat forms, such that Q±∞,Φ |= P = R. In other words, in the context of
transrational arithmetic, P cannot be written as a simple fraction.
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Proof. Suppose that P = R with R ≡ Q+S/T . As in the proof of Theorem 2.2
we find that R and S are closed and do not contain ∞,−∞ and Φ. So these
terms are closed integer expressions, say s and r. Next we note that x must
occur in T as otherwise R is independent from x which is not the case for P ,
however. It follows that T (∞) ∈ {∞,−∞,Φ}. T (∞) = Φ is impossible because
then R(∞) = Φ while P (∞) = 0. Both other cases remain. If T (∞) =∞ then
0 = P (∞) = q+s/∞ = q+s·0 = q. The same conclusion that q = 0 also follows
if T (∞) = −∞. It follows that q = 0 and R = s/T . Now P (0) = P (1) = P (2) =
∞, so R(0) = R(1) = R(2) = ∞. This implies that T (0) = T (1) = T (2) = 0.
As T (x) depends on x, it must be the case that T (x) is equivalent to a non-
trivial polynomial say of degree k ≥ 1, so that T having three roots at least, T
is (equal to) a polynomial of degree 3 at least, i.e. dg(T ) = k ≥ 3. Now notice
that except for x ∈ {0, 1, 2},

P (x) =
(x− 1) · (x− 2) + x · (x− 2) + x · (x− 1)

x · (x− 1) · (x− 2)
=

3 · x · x− 6 · x + 2

x · (x− 1) · (x− 2)
≡ A(x)

B(x)

We have dg(A) = 2 and dg(B) = 3, moreover almost everywhere A(x)/B(x) =
s/T (x) and, therefore almost everywhere A(x) · T (x) = B(x), whence for all
rational x, A(x) · T (x) = B(x). It follows that dg(A) + dg(T ) = dg(B), which
contradicts dg(A) = 2, dg(T ) ≥ 3 and dg(B) = 3.

Problem 2.1. Are sums of simple fractions universal for expressions involving
a single variable (relative to Q±∞,Φ)?

3 Division depth and fraction hierarchy

For expressions we define the division depth d/ inductively as follows:
d/(0) = d/(1) = d/(∞) = d/(−∞) = d/(Φ) = 0,
d/(−x) = d/(x), d/(x + y) = d/(x− y) = max(d/(x), d/(y)),
d/(x−1) = d/(x) + 1, d/(x · y) = d/(x/y) = max(d/(x), d/(y)) + 1.

The following question we will refer to as the fraction hierarchy problem for
Q±∞,Φ. This question is left open.

Problem 3.1. Is there a bound kfr such that for each expression P there is an
expression Q with d/(Q) < kfr such that Q±∞,Φ |= P = Q?

For Q0 the fraction hierarchy problem has a positive solution and expressions
with fraction depth 1 suffice to express all expressions modulo provable equal-
ity. For Q±∞,Φ, we expect that the fraction hierarchy problem has a negative
solution but we have not been able to prove that conjecture.

4 Concluding remarks

If division is taken for a partial function, the conventional viewpoint, or if divi-
sion on zero is supposed to return an absorptive value that propagates though
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all function symbols, the simplest totalised version of the conventional view-
point, thereby representing one way to model the conventional viewpoint on
division by zero, the topic of fraction theory trivialises because all expressions
are equivalent to a simple fraction.

For other total versions of arithmetic a theory of fractions emerges which is
an intriguing subject of its own and which reveals significant differences for the
different options of arithmetical datatypes. We have made some progress on
fraction theory for transrational arithmetic thereby highlighting the contrasts
with properties of fractions in the meadow or rational numbers. Various ques-
tions are left open, including analysing relations with the fraction theory of the
wheel of rational numbers as introduced in [23] and studied in [15] and [16].
We notice that [12] investigates a different aspect of a theory of fractions by
providing a notion of division safe calculation for meadows with divisive nota-
tion. Similar ideas may be of relevance for transrational arithmetic, and merit
further exploration. Finally we mention that [5] provides yet another aspect of
fraction theory for meadows by casting reasoning about fractions as an instance
of working with a paraconsistent logic.
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