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Abstract

The class of dual number meadows is introduced. By definition this class
is a quasivariety. Dual number meadows contain a non-zero element the
square of which is zero. These structures are non-involutive and coregular.
Some properties of the equational theory of dual number meadows are
discussed and an initial algebra specification is given for the minimal dual
number meadow of characteristic zero which contains the dual rational
numbers. Several open problems are stated.

1 Introduction

The idea of meadows is to introduce, on top of the signature of fields, a function
symbol for inverse or for division and to insist, or prefer, that operations are
total. On that basis the equational logic of known as well as novel structures and
classes of structures is investigated. We call a datatype arithmetical if it models
systems of numbers including well-known operators on numbers. Meadows are
arithmetical datatypes which provide inverse or division or both. Within the
informal notion of meadow various degrees of freedom still exist. For instance
the underlying ring may or may not be commutative, inverse may or may not
be an involution.

Md, the equational axiomatisation of (commutative, regular and involutive)
meadows, consists of the equations for a Commutative Ring (CR) in Table 1
plus two more axioms concerning inverse: involution and regularity of Table 2.
In [6] a meadow is defined as a model of Md. In section 1.2 below, however, we
will provide an alternative definition of meadows which serves as a preparation
for various useful generalisations of the notion of a meadow.

Regularity in combination with involution ensures that a structure which
meets these requirements is the expansion of a (von Neumann) regular ring.
A prominent meadow is the meadow Q0 of rational numbers. Q0 is an arith-
metical datatype, and an initial algebra specification was given for it in [10], a
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(x+ y) + z = x+ (y + z) (1)

x+ y = y + x (2)

x+ 0 = x (3)

x+ (−x) = 0 (4)

(x · y) · z = x · (y · z) (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = x · y + x · z (8)

Table 1: CR: axioms for a commutative ring

(x−1)−1 = x (involution)

(x · x) · x−1 = x (regularity)

(x−1 · x−1) · x = x−1 (coregularity)

x 6= 0→ x · x−1 = 1 (strong regularity)

Table 2: Optional meadow properties

paper which initiated work on arithmetical datatypes with multiplicative inverse
and/or division.

In this paper we will discuss some structures which come about when in-
troducing a non-zero element ε for which, like for 0: x · x = 0, i.e. such that
ε · ε = 0, in the presence of a totalised inverse for multiplication, −1. Because
ε is nonzero and has no proper inverse (i.e. no y exists such that ε · y = 1) such
structures are rings but not fields.

1.1 Preliminaries

Some preliminaries are useful. We will briefly discuss signatures, algebras,
datatypes, and abstract datatypes.

1.1.1 Signatures

From the theory of abstract datatypes, (see e.g. [13]), we will use the notion of
a signature, that is a collection of one or more names for sorts and zero or more
names for constants, with information of the sort to which these belong, plus
zero or more names of functions equipped with an arity, i.e. a list of argument
sorts and a target sort. In case there is just one sort, the signature is said to be
single sorted otherwise it is many-sorted. Different signatures are isomorphic
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if a bijective renaming transforms the one into the other. Isomorphism classes
of signatures are called similarity types, a preferred notion in logic, whereas
datatype theory embodies a preference to work with signatures and to be explicit
about categories of signatures when needed.

Below we will work with the following single sorted signature of rings ΣR: a
single sort named V for values, constant names 0 and 1 and two place functions
names · for multiplication and + for addition and a unary function −
for negation. The two place function name − is used as an abbreviation for
subtraction x− y = x+ (−y).

If Σ is a single sorted signature and M is a structure for that signature then
with |M| we denote the domain (alternatively: carrier) of M. Thus if V is the
name of the unique sort of Σ then |M| is the interpretation of V that comes
with M.

1.1.2 Algebras, datatypes, and arithmetical datatypes

Algebras are combinations of sets and functions. An abstract datatype consists
of an algebra and includes a signature which provides a name for each sort,
constant, and function. Below we will assume that an algebra is a datatype
and thereby is an interpretation of a signature. When considering datatypes
that embody conventional number systems and variations thereof we will speak
of arithmetical datatypes. An abstract datatype is the isomorphism class of a
datatype, though with a fixed signature. A datatype is called minimal if it has
no proper substructures.

1.2 On the definition of meadows

It has turned out not to be straightforward to develop a useful and flexible
terminology about meadows which extends to modified but similar structures.
This paper contributes to issues of nomenclature by proposing a uniform policy
for defining meadow related classes of arithmetical datatypes. Instead of start-
ing out with an axiomatic definition of meadows (models of CR enriched with
an inverse function that satisfies involution and regularity) a model theoretic
definition of the class of meadows is more amenable to various generalisations.
We will provide the model theoretic definition of meadows and then discuss
various related definitions of classes of arithmetical datatypes.

Below we will use t̂ for the interpretation of term t in a structure if it is clear
from the context which structure is meant. Otherwise, when more detail is
required, tA denotes the interpretation of t in A. Moreover, we will use function
symbols as well for the interpretation in a model, unless clarity requires further
detail.

The signature of meadows ΣMd, by default with inversive notation, consists
of the signature of unital rings (ΣR) extended with a unary function −−1 called
inverse. A strongly regular meadow A is a field (A|ΣR

) expanded with a function

−̂−1, we interpret −−1, in such a way that 0̂−̂1 = 0̂ and for all a 6= 0̂ ∈ |A|,
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a ·̂ a−̂1 = 1̂. We write Esrm for the equational theory of the class of all strongly
regular meadows.

Definition 1.1. A meadow is a model of Esrm.

The idea of this definition is that it expresses that meadows are as close to
fields as can be expressed with equational logic under the assumption that the
inverse of 0 is 0. It follows from results in [6], as well as from results in [17],
that the model theoretic definition coincides with the axiomatic definition men-
tioned above. An advantage of the model theoretic definition compared with
the axiomatic definition, however, is that it can be more easily generalised and
adapted. Below we will list some examples of generalisations and adaptations.

For more information regarding the equational theory of meadows we refer
to [14, 17, 10, 4]. For recent work on the mathematical aspects of zero totalised
division we mention [15].

Proposition 1.1. A strongly regular meadow is a meadow that satisfies the
conditional formula: x 6= 0→ x · x−1 = 1.

A strongly regular meadow is called a cancellation meadow in [4] in view of
the fact that among meadows it is also characterised by the following cancella-
tion property: x 6= 0 ∧ x · y = x · z → y = z.

In the presence of CR the axiom of strong regularity (i.e. equation strong
regularity in Table 2) implies regularity (equation regularity in Table 2), and
under the additional assumption that 0−1 = 0 strong regularity also implies
coregularity. Not every meadow is strongly regular. For instance the direct sum
of non-trivial strongly regular meadows is not strongly regular.

Notational matters. Σ(A) denotes the signature of datatype A. For a sig-
nature Σ ⊆ A A|Σ denotes the reduct of A to the signature Σ. We will use
constants (e.g. 0, 1 and ε) also for the names of corresponding values (interpre-
tations) in an arithmetical datatype. However, if the datatype is fixed, constants
equipped with a hat (e.g. 0̂) always denote the interpretation of the constant,
in that given datatype. When a risk of confusion is present, disambiguation by
means of a subscript (e.g 1A instead of 1̂) indicates that the interpretation of
a constant in a certain datatype or sort is meant. Below we will often use the
names of functions also as names for interpretations thereof (e.g. 0̂ + 1̂ instead
of 0̂ +̂ 1̂ or of 0A +A 1A).

1.3 Variations on the theme of meadows

With a variation on the theme a different but related class of structures is meant.
The difference may extend to differences of the underlying signature, but also
with the same signature a lot of variation is possible. In this section we discuss
four known variations of the class of meadows, each of which make use of the
same signature of meadows, in some cases using new constants as appealing
notations for existing terms.
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Formally real meadow. A structure which satisfies all equations that are
true in all strongly regular meadows which are expansions of formally real fields
is a formally real meadow. We refer to [5] for further information on formally
real meadows.

Skew meadow. Let a strongly regular skew meadow A be defined as a skew

field (A|ΣR
) expanded with a function −̂−1, where the interpretation of −−1, is

such that 0̂−̂1 = 0̂ and for all a 6= 0̂ ∈ |A|, a ·̂ a−̂1 = 1̂. Now let Esrsm be the
equational theory of the class of strongly regular skew meadows, then a skew
meadow is defined as a model of Esrsm.

It is an unfortunate aspect of the terminology that a non-commutative skew
meadow is not a meadow. We think that a flexible terminology about meadows
is in need of such flexibility, however.

Common meadow. Common meadows, see [9] can be defined as the struc-
tures which satisfy all equations true in expansions of an extension of a field
with an additional element a which represents an element propagating through
each operation (x+ a = x ·a = −a = a). Such an element is often denoted with
⊥ in work on abstract datatypes where it is considered an error element. In
the terminology of transmathematics such an element, which must be unique,
is called absorptive and the preferred notation for it is Φ.

Such structures with an absorptive element (say a) are expanded with a
multiplicative inverse made total by setting 0−1 = a. Upon adopting this model
theoretic definition of common meadows the results of [9] provide an alternative
equational and axiomatic definition of common meadows under the additional
constraint that the characteristic is zero.

Non-involutive meadow. Non-involutive meadows (see [8] ) can be defined
as models of the equational theory class of expansions of fields expanded with
an inverse operation which has been made total by taking 0−1 = f for some
element of f of the field which may not be zero. A choice with some moderate
popularity is f = 1.

1.4 Dual numbers

Dual numbers, as designed by William Clifford in 1873, constitute a ring exten-
sion of a field with a nilpotent element ε that is characterised by ε · ε = 0. For
an introduction to dual numbers we refer to [18] and [12]. In the setting of dual
numbers, like in Q0, the inverse, can be made total by requiring 1/0 = 0.

We will turn a dual field into a so-called dual number meadow by introducing
a new constant ε to the signature and a name for the inverse function which is
made total by taking value 0 in case the inverse in the dual field is undefined.
We will provide an algebraic specification of the dual number meadow Qdn0 . The
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result is a straightforward adaptation of the initial algebra specification of Q0

as given in [10].

2 Strongly regular dual number meadows

Let ΣMd,V,ε be the signature of meadows with sort name V and enriched with
a constant ε. Consider a strongly regular meadow M0. We will construct a
strongly regular dual number meadow Mdn

0 based on M0.
The carrier V dn of Mdn

0 consists of the objects (a, b) for a, b ∈ |M0|. The
interpretation of constants and functions is as follows, where 0, 1, + , · ,− , ,
and −1 are taken from M0:

• 0̂ = (0, 0),

• 1̂ = (1, 0),

• ε̂ = (0, 1),

• −̂(a, b) = (−a,−b),

• (a, b) +̂ (c, d) = (a+ c, b+ d),

• (a, b) ·̂ (d, e) = (a · d, a · e+ b · d),

• (a, b)−̂1 = (a−1,−b · (a · a)−1).

Definition 2.1. For a strongly regular meadow M, Mdn
0 is a strongly regular

dual number meadow, and moreover, any structure isomorphic to a structure of
the form Mdn

0 is a strongly regular dual number meadow.

As a consequence, up to isomorphism, all strongly regular dual number
meadows result from this construction. Examples of strongly regular dual num-
ber meadows are Qdn0 , Rdn0 and Cdn0 .

We notice that the elements of the form (a, 0) for a ∈ |M0| constitute a
substructure which is an isomorphic copy of M0. Below we will identify (a, 0)
with a. We will also write M0 ⊕ ε · M0 for Mdn

0 in order to highlight the
construction of its domain.

When reasoning in an arithmetical datatype of the form M0 ⊕ ε · M0 for
some strongly regular meadow M0, rather than working formally on the basis
of axioms, we will use functions re(−) and dual(−), both not mentioned in
the signature, so that when x = (a, b), re(x) = a and and dual(x) = b. These
functions play a similar role to re(−) and im(−) in the case of complex numbers.

When x = (a, b), upon identification of (a, 0) with a we may write x =
re(x) + ε · dual(x) = a+ ε · b. For ease of notation, in proofs we will frequently
use a and b as abbreviations for re(x) and dual(x) respectively.

Proposition 2.1. (0, b)−1 = (0, 0).

Proof. (0,b)−1 = (0−1,−b · (0 · 0)−1) = (0,−b · 0−1) = (0,−b · 0) = (0, 0).
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2.1 Dual number meadows

The class of dual number meadows with zero-totalised inverse is defined as
follows:

Let Kdn be the class of ΣMd,V,ε structures of the form Mdn
0 as defined in

Paragraph 2 with M0 a strongly regular meadow. Eqsrdnm is the equational
theory of Kdn. CEqsrdnm is the conditional equational theory of Kdn, i.e. the
set of conditional equations true in all structures in Kdn.

In Proposition 2.2 below it is shown that the conditional theory of strongly
regular dual number meadows is stronger than the equational theory of that
class.

Proposition 2.2. The conditional equation ε · x = 0 → x−1 = 0 (totalisation
axiom of Table 4) is valid in all strongly regular dual number meadows while it
is not a consequence of Eqsrdnm.

Proof. We write Ψt ≡ ε · x = 0 → x−1 = 0 for the totalisation axiom. If
totalisation is a consequence of Eqsrdnm then for some finite subset of it, say
Et ⊆ Esrdnm, Eqt |= Ψt. Let Q0,ε be the expansion of Q0 with a constant ε which
is made equal to 0. Now consider Qdn0 and consider the mapping φ : Qdn0 → Q0,ε

defined by φ(a, b) = a (stated differently: φ(ε) = 0). It is easy to verify that
φ is a surjective homomorphism. Because homomorphisms preserve equations,
Q0,ε |= Et and thus by assumption Q0,ε |= Ψt. Now Q0,ε |= ε · x = 0 · x = 0 and
it follows that Q0,ε |= x−1 = 0 which is not the case. This contradiction implies
that Eqsrdnm 6|= Ψt.

For that reason we define the dual number meadows as the smallest quasi-
variety which contains all strongly regular dual number meadows.

Definition 2.2. A dual number meadow is a structure A with signature ΣMd,V,ε

such that A |= CEqsrdnm.

Definition 2.3. A weakly totalised dual number meadow is a structure A with
signature ΣMd,V,ε such that A |= Eqsrdnm.

Proposition 2.2 establishes the existence of weakly totalised dual number
meadows. This definition follows the pattern of definitions of meadow related
classes as discussed in Paragraph 1.2 above. The following questions arise and
are left open.

Problem 2.1. Does Eqsrdnm have a finite equational axiomatisation?

Problem 2.2. Does CEqsrdnm have a finite conditional equational axiomatisa-
tion?

Problem 2.3. Is Eqsrdnm decidable?

Problem 2.4. Is CEqsrdnm decidable?
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2.2 Properties of strongly regular dual number meadows

Leaving aside the totalised inverse, the properties of structures Mdn
0 are well-

known, e.g. see [18]. In particular structures of the form Mdn
0 constitute a unital

commutative ring. We will refrain from checking such matters below. Moreover,
these structures satisfy the following equations, each of which, except the first,
are sensitive to “division by zero”.

Although we are working in a model (structure algebra), for ease of notation
we will write 0 instead of 0̂, + instead of +̂ etc. We use (a, b) and (a+ ε · b)
as equivalent and interchangeable descriptions of the same entities.

Proposition 2.3. ε · ε = 0.

Proof. (0, 1) · (0, 1) = (0, 0 · 1 + 1 · 0) = (0, 0).

Proposition 2.4. ε−1 = 0.

Proof. With Proposition 2.1 immediately (0, 1)−1 = (0, 0).

Proposition 2.5. ε · x = 0→ x−1 = 0.

Proof. With ε · x = (0, 1) · (re(x), dual(x)) = (0, re(x)) the assumption on x
implies re(x) = 0, which implies, given that M0 is a strongly regular meadow,
x−1 = (re(x), dual(x))−1 = (0, dual(x))−1 = (with Proposition 2.1) = 0.

Proposition 2.6. (x · y)−1 = x−1 · y−1.

Proof. Let a = re(x), b = dual(x), c = re(y), d = dual(y). Now ((a+ ε · b) · (c+
ε · d))−1 = (a · c + ε · (a · d + c · b))−1 = (a · c − ε · (a · d + c · b)) · (a · c)−2 =
((a− ε · b) · (c− ε · d)) · a−2 · c−2 = (a+ ε · b)−1 · (b+ ε · d)−1.

Proposition 2.7. If re(x) 6= 0 then x · x−1 = 1.

Proof. With a = re(x), b = dual(x): (a, b) · (a, b)−1 = (a, b) · (a−1,−b · a−2) =
(a · a−1, b · a−1 − a · b · a−2) = (1, 0) = 1.

Proposition 2.8. x · (x−1 · x−1) = x−1.

Proof. With a = re(x), b = dual(x): if re(x) = 0 then x−1 = 0 and the result is
immediate. Otherwise x · (x−1 · x−1) = (x · x−1) · x−1 = (with Proposition 2.7)
= 1 · x−1 = x−1.

Proposition 2.9. (x+ ε · y)−1 = (x− ε · y) · x−2.

Proof. Let a = re(x) and b = dual(x). If a = 0 then re(x+ ε · y) = 0 and with
Proposition 2.1 (x+ ε · y)−1 = 0. Moreover x−1 = 0 whence (x - ε · y) · x−2 = 0.
If a 6= 0 then we write re(y) = c and dual(y) = d.

Now (x + ε · y)−1 = (a + ε · (b + y))−1 = (a + ε · b + ε(c + ε · d)))−1 =
(a + ε · b + ε · c + ε · ε · d))−1 = (a + ε · b + ε · c))−1 = (a + ε · (b + c))−1 =
a−1 − ε · (b + c) · a−2 = (a − ε · (b + c)) · a−2. Next we consider the right
hand side of the equation: (x − ε · y) · x−2 = (x − ε · (c + ε · b)) · x−2 =
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(x− ε · c) ·x−2 = (a+ ε · (b− c)) · (a+ ε · b)−2 = (a+ ε · (b− c)) · (a− ε · b)2 ·a−4 =
(a + ε · (b − c)) · (a2 − ε · 2 · b · a) · a−4 = (a + ε · (b − c) · (a − ε · 2 · b) · a−3 =
(a2 +ε ·a ·(b−c−2 ·b) ·a−3 = (a+ε ·(b−c−2 ·b)) ·a−2 = (a−ε ·(b+c)) ·a−2.

Proposition 2.10. ε · x = 0→ x · x = 0.

Proof. Let a = re(x) and b = dual(x). Then ε · x = 0 implies a = 0. Thus
x · x = (a+ ε · b) · (a+ ε · b) = a · a+ ε · (a · b+ b · a) = 0.

Proposition 2.11. ε · x 6= 0→ (x−1)−1 = x.

Proof. Let a = re(x) and b = dual(x). From ε · x 6= 0 it follows that a 6= 0.
Now (x−1)−1 = ((a+ ε · b)−1)−1 = (a−1 + ε · (−b) · a−2)−1 =
(a−1)−1 + ε · −(−b · a−2) · (a−1)−2 = a+ ε · b · a · a−1 = a+ ε · b = x.

Proposition 2.12. (x−1)−1 · x−1 = x · x−1.

Proof. Let a = re(x) and b = dual(x). If a = 0 then x−1 = 0 so both sides
vanish. If a 6= 0 then ε · x = ε · a 6= 0 and Proposition 2.11 applies.

Proposition 2.13. (x−1)−1 · x = x · x.

Proof. Let a = re(x) and b = dual(x). If a = 0 then (x−1)−1 = 0 and x · x = 0,
and the equation holds. If a 6= 0 then x · ε 6= 0 and Proposition 2.11 applies.

Proposition 2.14. ε · x 6= 0→ x · x−1 = 1.

Proof. From ε ·x 6= 0 it follows that re(x) 6= 0. Now Proposition 2.7 applies.

Proposition 2.15. (x+ ε · y) · (x+ ε · y)−1 = x · x−1.

Proof. If ε ·x = 0 then, by Proposition 2.5, x−1 = 0 and so x ·x−1 = 0, moreover
ε · (x + ε · y) = ε · x = 0 so that another application of Proposition 2.5 yields
the required result. If, on the other hand, ε · x 6= 0 then two applications of
Proposition 2.14 suffice.

3 Axioms for dual number meadows

Finding axioms for a class of algebras is a somewhat arbitrary exercise. In
the case of dual number meadows it is plausible to require that all axioms are
satisfied in all of K as defined above. This aspect amounts to the soundness
of the axioms. Whether or not a finite complete set of axioms can be given is
another matter (see problem 2.2 above).

In Table 3 some equational axioms for Eqsrdnmhave been collected. Each of
these has been proven valid in all strongly regular dual number meadows. We
do not know whether or not these axioms are complete for Eqsrdnm.

The conditional equation (called totalisation) of Table 4, which specifies how
the inverse is made total in strongly regular dual number meadows, constitutes
the only significant conditional axiom which we have found.
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import : CR

(x · y)−1 = x−1 · y−1 (9)

(x−1)−1 · x−1 = x · x−1 (10)

(x−1)−1 · x = x · x (11)

ε · ε = 0 (12)

ε · x · x · x−1 = ε · x (13)

(x+ ε · y)−1 = (x− ε · y) · (x−1 · x−1) (14)

Table 3: Mddn: equational axioms for a dual number meadow

import : CR,Mddn

ε · x = 0→ x−1 = 0 (totalisation)

Table 4: Mddn,t

ε · x 6= 0→ x · x−1 = 1

Table 5: Dual strong regularity
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The totalisation axiom is not true for all weakly totalising dual number
meadows. Indeed the variety of weakly totalised dual number meadows con-
tains a quasivariety (model class of the conditional equational theory CEqsrdnm),
which better approximates the idea of dual numbers than is possible by means
of equations only.

Below some consequences of the axioms will be derived. In these proofs no
use is made of re(x) and dual(x). The standard property of a commutative ring
that 0 · x = x · 0 = 0 will be used, however, and this fact merits a repetition
of its well-known proof: (0 + 0) · x = 0 · x + 0 · x, and thus 0 · x + (−(0 · x)) =
(0 · x+ 0 · x) + (−(0 · x)) = 0 · x+ (0 · x+ (−(0 · x)) = 0 · x+ 0 = 0 · x.

3.1 Some consequences of the axioms

The following consequences can be drawn from the axioms Mddn of Table 3.

Proposition 3.1. x · (x−1 · x−1) = x−1.

Proof. Use axiom 14 of Mdd (taking y = 0).

Proposition 3.2. 0−1 = 0.

Proof. In (x+ ε ·y)−1 = (x− ε ·y) · (x−1 ·x−1) (axiom 14) take x = y = 0. Then
0−1 = 0 · 0−1 · 0−1 = 0.

Proposition 3.3. 1−1 = 1.

Proof. In (x−1)−1 · x = x · x (axiom 11) take x = 1 and obtain (1−1)−1 = 1.
Next in (x + ε · y)−1 = (x − ε · y) · (x−1 · x−1) take y = 0 and x = x−1. Thus
(x−1)−1 = x−1 · (x−1)−1 · (x−1)−1. Now, with x = 1, 1 = x−1 · 1 · 1 so that
1 = x−1.

Proposition 3.4. (−1)−1 = −1.

Proof. (−1)−1 = (by Proposition 3.1) = (−1) ·((−1)−1 ·(−1)−1) = (−1) ·((−1) ·
(−1))−1 = (−1) · (1)−1 = (−1) · 1 = −1.

Proposition 3.5. (−x)−1 = −(x−1).

Proof. (−x)−1 = ((−1) · x)−1 = (−1)−1 · x−1 = (−1) · x−1 = −(x−1).

Proposition 3.6. x · y = 1→ y = x−1.

Proof. Assume x · y = 1 and first obtain x−1 · y−1 = 1−1 = 1. Multiplying both
sides with x · x−1 gives x · x−1 · x−1 · y−1 = x · x−1, so that, with axiom 14 of
Mdd (taking y = 0), x−1 · y−1 = x · x−1 whence 1 = x · x−1. Now multiplying
both sides of x ·y = 1 with x−1 yields x ·y ·x−1 = x−1, and with commutativity
and associativity of multiplication and 1 = x · x−1 we obtain y = x−1.

Proposition 3.7. ((x−1)−1)−1 = x−1.
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1(x) = x · x−1 (15)

x2 = x · x (16)

Table 6: DO: axioms for defined operators

import : CR,Mddn,DO

1(x2
1 + x2

2 + x2
3 + x2

4 + 1) = 1 (FR4)

Table 7: Initial algebra specification for rational dual numbers

Proof. ((x−1)−1)−1 = (with Proposition 3.1, and associativity and commuta-
tivity of · ) = ((x−1)−1)−1 · ((x−1)−1)−1 · (x−1)−1 = (with axiom 9 of Mddn)
= ((x−1)−1)−1 · ((x−1)−1 · x−1)−1 = (with axiom 10 of Mddn) = ((x−1)−1)−1 ·
(x · x−1)−1 = ((x−1)−1 · x)−1 · (x−1)−1 = (with axiom 11 of Mddn) = (x · x)−1 ·
(x−1)−1 = x−1 ·x−1 ·(x−1)−1 (with axiom 10 of Mddn)= x−1 ·x−1 ·x = x−1.

In the presence of dual strong regularity:

Proposition 3.8. ε · x 6= 0→ (x−1)−1 = x.

Proof. With ε · x 6= 0→ x · x−1 = 1 one finds x · x−1 = 1 and after application
of inverse to both sides and distribution of inverse over multiplication: x−1 ·
(x−1)−1 = 1. This implies x · (x−1 · (x−1)−1) = x · 1 and (x · x−1) · (x−1)−1 = x
from which one obtains 1 · (x−1)−1 = x and the desired identity.

Proposition 3.9. ε · x 6= 0 ∧ ε · y 6= 0→ ε · x · y 6= 0.

Proof. Suppose ε·x·y = 0 then ε·x·y·x−1·y−1 = 0 and thus, with the assumptions
on x and y, and strong regularity ε·x·y·x−1·y−1 = ε·x·x−1·y·y−1 = ε·1·1 = ε = 0,
and thus ε · x = 0 in contradiction with the assumption on x.

3.2 Initial algebra specifications

The dual fracpairs constitute a transversal for Qdn0 .

Definition 3.1. A dual fracpair is a closed expression of the form p · n−1 + ε ·
q ·m−1 such that (i) n,m are integer expressions made up from 1 and + only
(i.e. n and m represent positive integers), (ii) p, and q are integer expressions
of the form 0, k or −k with k a positive integer expression made up from 1 and
+ only, and (iii) gcd(p, n) = gcd(q,m) = 1.

Proposition 3.10. For positive integer expressions n made up from 1 and +
CR + Mddn + DO + FR4 ` n · n−1 = 1.
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Proof. Write n as a sum of four squares plus 1 and apply FR4.

The following follows from the construction of Qdn0 .

Proposition 3.11. (i) different dual fracpairs have different interpretations in
Qdn0 and (ii) each element of Qdn0 is the interpretation of a unique fracpair.

Theorem 3.1. The equations of Table 7 constitute a finite equational initial
algebra specification of Qdn0 .

Proof. The soundness of the equations is a matter of inspection. To establish
that the specification is an initial algebra specification of Qdn0 it suffices to
show that each closed expression is provably equal to a dual fracpair. The
proof is done by induction on the structure of expressions. Let t ≡ 1 then
t = 1 · 1−1 + ε · 1 · 1−1. If t ≡ 0 then t = 0 · 1−1 + ε · 0 · 1−1. The remaining cases
are t ≡ −r, t ≡ r−1, and t ≡ r + s, t ≡ r · s. Let r = p · n−1 + ε · q ·m−1 then
t ≡ −r = −(p ·n−1 +ε ·q ·m−1) = (−p) ·n−1 +ε ·(−q) ·m−1 = −[p]/n+ε ·−[q]/m,
where −[0] ≡ 0,−[k] ≡ −k,−[−k] ≡ k. For the case = r−1 three subcases on p
are distinguished. If p ≡ 0 then t−1 = (0−ε·q ·m−1)·0−2 = 0 = 0·1−1+ε·0·1−1.
If p is positive, say p = k, then t−1 = (k · n−1 + ε · q ·m−1)−1 = (k · n−1 − ε · q ·
m−1)·(k ·n−1)−2 = k ·n−1 ·(k ·n−1)−2 +ε·−[q]·m−1 ·(k ·n−1)−2. Now k ·n−1 ·(k ·
n−1)−2 = k ·n−1 · k−1 · k−1 · (n−1)−1 · (n−1)−1 = n−1 · k−1 · (n−1)−1 · (n−1)−1 =
k−1 ·n−1 · (n−1)−1 · (n−1)−1 = k−1 ·n−1 ·n · (n−1)−1 = k−1 ·n−1 ·n ·n = n ·k−1.
Next consider −[q] ·m−1 · (k ·n−1)−2. If q ≡ 0 then r = n · k−1 + ε0 · 1−1. If q is
positive, then −[q] ·m−1 ·(k ·n−1)−2 = (−q) ·m−1 ·k−1 ·k−1 ·(n−1)−1 ·(n−1)−1 =
(−q) ·m−1 ·k−1 ·k−1 ·(n−1)−1 ·(n−1)−1 ·n ·n−1 = (−q) ·m−1 ·k−1 ·k−1 ·(n−1)−1 ·
n ·n ·n−1 = (−q) ·m−1 · k−1 · k−1 ·n ·n = (−a) · b−1 for suitable positive integer
expressions a and b with gcd(a, b) = 1, so that r = n · k−1 + ε(−a) · b−1. The
case that p is negative works similarly, and so do the notationally somewhat
more involved cases for addition and multiplication.

Following [7] Theorem 2, the equation mentioned in Table 8, as a replacement
of FR4 of Table 7 also provides an initial algebra specification in the case of Q0.
That observation extends, eithout complications, to the context of dual rational
numbers.

Proposition 3.12. The equations as mentioned Table 8 provide an equational
initial algebra specification of Qdn0 .

In [3] it is shown that an initial algebra specification of the meadow Q0 of
rationals can be given by adding to the equations Md of meadows a single equa-
tion with a single variable. The proof depends on some elementary consequences
of Galois theory. This observation leads to the following question.

Problem 3.1. Can Qdn0 be given an initial algebra specification by complement-
ing CR + Mdd + DO with a single equation involving a single variable only.

Let FR = {1(X2
1 + · · ·+X2

n + 1) = 1|n ∈ N+}. As was shown in [5] Md+ FR
constitutes a complete axiomatisation (also called a basis) of the meadow of
reals R0. A corresponding question for dual number meadows reads thus:
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import : CR,Mddn,DO

1(x2
1 + x2

2 + 1) = 1 (17)

Table 8: Formal reality for sums of two squares

Problem 3.2. Is CR+Mdd +DO+ FR a complete axiomatisation of the equa-
tional theory of Rdn0 ?

Problem 3.3. Is the equational theory of Rdn0 decidable?

4 Discussion and concluding remarks

In mathematics it is common practice to view numbers as elements of algebras.
The algebraic perspective on such mathematical entities leads to rings, fields, the
algebra of quaternions, skew fields, dual numbers, and so on. From theoretical
computer science we adopt the idea that one considers datatypes rather than
algebras, or algebraic structures in the presence of relations (for instance an
ordering) as well as functions. A datatype consists of an algebra coupled with
a signature, that is a naming scheme for sorts, constants, and functions. In this
manner the signature determines a formal language and different datatypes with
the same signature correspond to the various algebras that constitute different
semantic models for the signature at hand. With arithmetical datatype we will
refer to datatypes which contain numbers or entities similar to numbers. For
an introduction to datatypes we refer to the textbook [13] and to [10] and the
references mentioned in [10].

The transition from algebras to datatypes is quite significant for clarifying
the relation, or rather the plurality of possible relations, between arithmetic and
logic. At the same time the introduction of a signature is somehow counterin-
tuitive from the perspective of conventional mathematics in which the notion
of syntax is virtually absent. In the case of rational numbers for instance it is
plausible, when contemplating an arithmetical datatype for rational numbers,
to include inverse, or division, or both, in the signature. Doing so creates a
setting in which 1/0 is a legal expression, quite independently of its meaning.
Even if division is understood as a partial function and 1/0 has no defined value
then still 1/0 is a legal expression and the question “what is 1/0?” is a valid
question, which is entitled to an answer. The question is equally valid as the
question whether or not Σ∞n=11/n exists.

I consider the common practice to say that x−1 is a notation for the unique
y such that x · y = 1, if it exists, is not entirely satisfactory, if only because
through that convention the use of an expression already carries mathematical
content as a side effect. By having inverse as a member of the signature such
descriptions can be avoided.
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In the context of datatypes, equations have been identified as a very useful
method of specification of classes of datatypes. Finite sets of equations can
be used as proof systems amenable to automation. Given a set of equations
the class of its models (algebras) has an initial algebra which is unique up to
isomorphism. A finite set of equations is called an equational specification of its
initial algebra. Such specifications were found for natural numbers, and integers
some 50 years ago, and have since been developed for many data structures that
arise in computing.

Given a finite set of equations it is often possible to find an implementation
of the initial algebra by means of fully automated term rewriting techniques.
In [10] a datatype for rational numbers is proposed by extending the signature
with an inverse function −1 under the assumption that 0−1 = 0. The main
result of [10] is to provide a finite equational specification of Q0, the datatype
of rational numbers, with inverse made total by having 0−1 = 0. The question
whether or not the specification of Q0 can be turned into a terminating and
confluent term rewriting system has remained open, however.

The present paper provides an extension of the work in [10] to the case of
dual numbers. As it turns out having p−1 = 0 in case the original definitions
have p−1 undefined works quite well.

The use of equational logic opens two perspectives. On the one hand it leads
to term rewriting and automatic implementation, on the other hand it leads to
universal algebra where elementary classes, i.e. the model classes of sets of
equations, play a key role. We define a meadow as an element of the smallest
elementary class which contains all fields expanded with a zero totalised inverse
operation. This approach to the definition of classes of arithmetical datatypes
can be generalised in various directions, for instance dual numbers, transrational
numbers, and transreal numbers.

We have thereby presented an informal format for defining classes of meadow-
like structures. Technical details are provided regarding dual number meadows.
In this format a definition of dual number meadow is given and some investi-
gation of the equational theory of dual number meadows has been provided.
For the case of dual rational numbers, the minimal dual number meadow of
characteristic 0, an initial algebra specification is developed. A range of open
questions concerning dual number meadows has been formulated.

4.1 Transmeadows

In the format for defining classes of meadow-like arithmetical datatypes, as
outlined in Paragraph 1.3 above, many more generalisations can be imagined.

As a new generalisation/adaptation of meadows we propose the transmead-
ows. These constitute a generalisation of the transrational numbers as well as
of the transreal numbers ([1]) but not of the more sophisticated transcomplex
numbers of [16].

The signature of transmeadows is the same as for meadows. We will first
define strongly regular transmeadows. We assume that A is an arbitrary ordered
field with domain V . A is transformed into Atm by extending its domain and
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by defining (extending) all operations to the new domain. The domain V is
extended to Vtm by introducing three pairwise distinct and new elements +̂∞,

−̂∞, and Φ̂ and expanded with a function −−̂1. The latter function serves as
the interpretation of the interpretation of −−1.

The elements +̂∞, −̂∞ serve as interpretations of 0−1,−(0−1), and 0 · 0−1

respectively.
For ease of notation constant names +∞, −∞ and Φ (the latter called nul-

lity), are used for these entities (+̂∞, −̂∞, and Φ̂ respectively). The extension
of the functions of A to Vtm is given by the following requirements, thereby
obtaining Atm:

• + and · are commutative

• −(x · y) = (−x) · y,−(x+ y) = (−x) + (−y).

• x+ Φ = x · Φ = −Φ = Φ−1 = Φ, 0−1 = +∞,∞−1 = (−∞)−1 = 0,
0 · ∞ = Φ,−(+∞) = −∞,−(−∞) = +∞,+∞+ (−∞) = Φ,

• x 6= 0 ∧ x 6= +∞∧ x 6= −∞∧ x 6= Φ→ x · x−1 = 1,

• x 6= Φ ∧ x 6= −∞→ x+ (+∞) = +∞,

• and for all a > 0 ∈ V : a · (+∞) = +∞.

We write ΣMdt for the mentioned signature expansion of ΣMd and we write
Eqsrtm for the equational theory of the class of all strongly regular transmeadows
and CEqsrtm for the conditional equational theory of the class of all strongly
regular transmeadows. Here the ordering is not included in the signature and
for that reason it does not occur in equations or in conditions of conditional
equations.

Given these preparations a transmeadow can be defined to be a model of
CEqsrtm. Several questions about transmeadows remain open. We mention these
questions for further research.

Problem 4.1. Is the class of transmeadows a variety (i.e. is CEqsrtm logically
equivalent to Eqsrtm)?

Problem 4.2. Does the class of transmeadows have a finite (conditional) equa-
tional axiomatisation?

Problem 4.3. Is the equational theory of transmeadows decidable?

Problem 4.4. Find a suitable definition of dual number versions of transmead-
ows.

Problem 4.5. Find a suitable definition of a transcomplex meadow.
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4.2 Concluding remarks

We conclude with restating two older outstanding open questions concerning
meadows, both of which can be reformulated for the dual number meadow of
rationals as well as for the transmeadow of transrational numbers.

Problem 4.6. Is there a finite algebraic specification of Q0 which is complete
for its equational theory?

Problem 4.7. Is there a finite equational initial algebra specification of Q0

which constitutes a complete (i.e. confluent and terminating) term rewrite sys-
tem.

Conditional term rewriting is more involved than unconditional term rewrit-
ing and, as a consequence, a collection of conditional equations can be under-
stood as a conditional term rewriting system in different ways. The following
question represents a family of questions, corresponding to the different inter-
pretations of systems of conditional equations as term rewrite systems.

Problem 4.8. Is there a finite conditional equational initial algebra specification
of Q0 which gives rise to a complete (i.e. confluent and terminating) conditional
term rewriting system.
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