
Transmathematica DOI Prefix 10.36285 ISSN 2632-9212

Totalising Partial Algebras: Teams and Splinters

Jan A. Bergstra
j.a.bergstra@uva.nl janaldertb@gmail.com

Informatics Institute, University of Amsterdam,
Science Park 904, 1098 XH, Amsterdam,

The Netherlands

John V. Tucker
j.v.tucker@swansea.ac.uk

Department of Computer Science,
Swansea University, Bay Campus,

Fabian Way, Swansea, United Kingdom, SA1 8EN

Submitted: 17 April 2021
Revised: 27 March 2022

Abstract

We will examine totalising a partial operation in a general algebra by
using an absorbtive element ⊥, such as an error flag. We then focus on
the simplest example of a partial operation, namely subtraction on the
natural numbers: n − m is undefined whenever n < m. We examine
the use of ⊥ in algebraic structures for the natural numbers, especially
semigroups and semirings. We axiomatise this totalisation process and
introduce the algebraic concept of a team, being an additive cancellative
semigroup with totalised subtraction. Also, with the natural numbers in
mind, we introduce the property of being generated by an iterative func-
tion, which we call a splinter. We prove a number of theorems about the
algebraic specification of datatypes of natural numbers.
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1 Introduction

We will examine totalising a partial operation in a general algebra by introducing
a special element to flag when the operation is not defined. The process involves
adding a new element ⊥ to the algebra, and re-defining each operation f of the
algebra on its arguments x such that

(a) if x does not contain ⊥ and f(x) is undefined then f(x) = ⊥; and
(b) if x does contain ⊥ then f(x) = ⊥, i.e., ⊥ is absorbtive.

Augmenting a partial structure with an absorbing flag like ⊥ is familiar in
practice. In the arithmetical structures to be found in calculators, the absorbtive
element ⊥ is the error flag, returned as the value for 1/0, tan(π/2), log(0) etc.
Modeling the output of a calculator on say 1/0 constitutes a simplification,
however, which may fail to take into account that often the result cannot be used
as an input for further calculation, an option which one might expect or even
require for ⊥. Connections between ⊥ and actual computational phenomena
cannot be taken for granted and will require detailed scrutiny depending on the
case at hand.

An advantage of totalisation, which primarily motivates our work, is that it
simplifies (massively!) logical reasoning.

What effect does introducing this simple absorbtive element into a partial
algebra, for the purposes of totalisation, have on the operations of an algebra
and their standard properties?

We will consider this question in a general case using the theory of abstract
datatypes. First, we describe the totalisation method for datatypes in detail,
and establish the effect of applying the totalisation method in the task of equa-
tionally specifying a datatype.

Our main interest is in arithmetical structures. Here, we will study sim-
ple examples of arithmetical structures built on a set N of natural numbers.
The standard algebraic structures on the natural numbers are total: an addi-
tive semigroup; a multiplicative semigroup; and, by gluing these together with
distribution laws, semirings; the semigroups and semirings are commutative.
However, there are many more structures: we begin with studying the totalisa-
tion of what must be the simplest partial operation, namely subtraction on a
set N of natural numbers:

n−m = ⊥ whenever n,m ∈ N and n < m.

As we will see, the totalisation method is dependent on what structures are
built on the naturals.

Abstractly, subtraction on the natural numbers is viewed through the lens of
an additive semigroup structure. We show how an additive semigroup can have a
partial subtraction operation that can be made total by enriching the semigroup
with ⊥. The new structure is something between an additive semigroup and an
additive group (in which binary subtraction can be defined as a total operation
using the group’s unary inverse); we call it a team – a name pointing in the
direction of groups. Notice that a unary additive inverse −n is of no interest
on N since n + m = 0 ⇐⇒ n = m = 0. Specifically, a team is a cancellative
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semigroup equipped with a partial subtraction operation made total with ⊥.
We give a first order axiomatisation Teams of teams using 9 equations and one
implication with a negation as a premiss. We classify the models of the axioms
and show:

Theorem 1.1. Let A be any algebra. Then: A |= Teams if, and only if, A
is an enrichment, by subtraction made total by an absorbtive element ⊥, of an
cancellative commutative semigroup.

The class of all Teams cannot be defined by any set of conditional equations
(i.e., the class of teams is not a quasivariety).

For an algebra to qualify as a datatype it must be minimal, i.e., all its
elements can be constructed by applying its operations to its constants. The
team

Nteam = (N|0,+,−,⊥)

of natural numbers is not minimal. Now, since the work on the natural numbers
by Dedekind and Peano it has become conventional to view natural numbers
as made from 0 by repeated application of a successor function n+ 1 (although
both Dedekind and Peano used 1 as the starting point). Algebras which can
be exhausted by repeatedly applying a single unary function are ubiquitous
but, unlike semigroups, groups, semirings, rings and fields, have not acquired a
dedicated name. We will refer to such structures as splinters, using terminology
borrowed from the theory of computable functions. In the general algebraic
case, we require the iterative generating functions to have explicit definitions in
terms of the algebra’s operations. Being a splinter is a structural property of
algebras that implies minimality.

We apply the general notion of a splinter to our algebras of natural numbers.
Of particular interest, is an algebra

Nteam,1,· = (N|0, 1,⊥,+,−, ·)

of natural numbers that forms a team under addition, but also has multiplica-
tion and a unit. The algebra is an adaptation of a semiring to accommodate
subtraction: we refer to it as a common semiring with subtraction. The presence
of addition and 1 implies the algebra is a splinter. We prove:

Theorem 1.2. The equational theory of Nteam,1,· = (N|0, 1,⊥,+,−, ·) does not
have a finite basis.

However, on removing multiplication and leaving 1:

Theorem 1.3. The equational theory of the team Nteam,1 = (N|0, 1,⊥,+,−)
with 1 is decidable.

The structure of the paper is this. In Section 2, we explain the method of
totalising with ⊥ for general algebras. In Section 3, we focus on the natural
numbers and semigroups and introduce teams. In Section 4, we introduce splin-
ters. In Sections 5 and 6 we examine splinters of natural numbers, Nteam,1,·
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and Nteam,1, respectively. In Section 7, we conclude with some remarks about
totalisation, subtraction and arithmetical systems.

Preliminaries. We assume the reader is familiar with the basic theory of ab-
stract datatypes and their equational specification: notions of signature, al-
gebra, minimal algebra, terms, equations, conditional equations, morphisms,
initial algebras. See, for instance, [16].

A datatype is a minimal algebra and may be total or partial. An abstract
datatype is the isomorphism class of a datatype. We will maintain a nota-
tional distinction between concrete datatypes and the corresponding abstract
datatypes.

We will meet several different datatypes of natural numbers, but we will
consistently use the notational conventions:

1. N for some chosen set of natural numbers;

2. N for some chosen algebraic structure built on the set N of natural num-
bers; and

3. N for the isomorphism class of the algebraic structure N built on the set
N of natural numbers.

If N is a datatype then N is the abstract datatype to which it belongs.
Let K be a class of Σ-algebras. The equational theory Eqn(K) of K is the

set of all equations holding true in every algebra belonging to K. A set B of
equations is a basis for an equational theory E if, and only if, B and E have
exactly the same models; E is finitely based if E has a finite basis.

Other notions will be introduced in situ.

1.1 Impact on computability

Computability of datatypes is not our theme in this paper but some remarks
about that matter may be of use. If one starts out with a computable datatype
involving total functions only the resulting datatype is computable. For a defin-
tion of computability of datatypes with total functions only we refer to [10].
If one starts out with a datatype A involving partial functions then defining
computability of A requires some care. A satisfactory definition of computabil-
ity for datatypes involving partial functions, is obtained by requiring that A
is computable if, and only if, the result of totalizing all operations with a new
absorptive element ⊥ is computable.

If, however, one starts out with a semi-computable (though not computable)
datatype, involving partial functions the result of totalising with an absorptive
element may (but need not) be a datatype which is not semi-computable. In the
setting of elemenatry arithmetic semi-computable datatypes are less common,
mainly because semi-computable fields are necessarily also computable. How-
ever, even if semi-computablity is lost, the simplification of the logic obtained
by totalisation may well be worth the effort.
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2 Structures with an absorptive element

We will discuss total and partial structures with and without absorptive ele-
ments, focusing on single sorted algebras.

2.1 Single-sorted algebras with absorption

For single sorted signature Σ and Σ-algebra A with carrier set As, the definition
of an absorptive element is as follows:

Definition 2.1. A single-sorted Σ-structure A has an absorptive element a ∈
As for its sort s if for each operation f of Σ, if one of its arguments equals a
then so does its value.

The following partial result is relevant for arithmetical datatypes, which
conventionally are single-sorted and are equipped with a two place addition
function.

Proposition 2.1. If Σ is single sorted and there is at least one function f in
Σ with two or more arguments then an absorptive element in a Σ-algebra is
unique.

Proof. Let f have arguments x1, x2, . . . , xn+2, n ≥ 0. Let a and b be absorptive
elements of Σ structure A then a = f(a, b, . . . , b) = b.

Let ⊥ be a standard notation for an absorbtive element. Thus, normally,
our use of ⊥ in an algebra will imply that it is absorbtive with respect to all
the operations of the algebra.

Definition 2.2. Let A be a single sorted Σ-algebra with sort s and assume
⊥ 6∈ As. Then the ⊥-enlargement of A is an algebra A⊥ with signature Σ⊥ =
Σ∪ {⊥ : s} and carrier set (A⊥)s = As ∪ {⊥}, which is an enlargement of A in
which ⊥ is absorptive.

As a notation for the construction of the ⊥-enlargement A⊥ from A we will
use Enl⊥(A). For any class K of Σ-algebras, define

Enl⊥(K) = {Enl⊥(A)|A ∈ K}.

Proposition 2.2. Let Σ be a single-sorted signature which contains at least
one function symbol with two or more arguments. For any nonempty class K of
Σ-algebras, the class Enl⊥(K) cannot be defined by conditional equations, i.e.,
is not a quasivariety.

Proof. Let f ∈ Σ, and without loss of generality, we assume that f has arity 3.
Assume for a contradiction, E is a conditional equational theory over Σ⊥ such
that Alg(Σ⊥, E) = Enl⊥(K).

We notice that Enl⊥(K) |= f(x, y, y) = ⊥ → x = ⊥ ∨ y = ⊥, and thus also
E ` f(x, y, y) = ⊥ → x = ⊥ ∨ y = ⊥. Now if a conditional equational theory
proves a disjunction then it must prove either of the two disjuncts.
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Suppose E ` f(x, y, y) = ⊥ → x = ⊥, the first disjunction; the argument for
the other disjunction us similar. Then taking y = ⊥, and using E ` f(x,⊥, z) =
⊥, which must be the case because it holds in Enl⊥(K), we find E ` x = ⊥.

Now consider any algebra A in K, this algebra has a nonempty domain
containing at least one value d. We have d ∈ (Enl⊥(A))s and d 6= ⊥, by
definition of Enl⊥. So Enl⊥(A) |= x = ⊥ fails and E ` x = ⊥ fails as well, thus
arriving at a contradiction that completes the proof.

In contrast, if only unary functions are present then a counterpart of Propo-
sition 2.2 cannot be shown as axioms f(x) = ⊥ → x = ⊥ do the job.

It follows from Proposition 2.2 that in most cases there is no way to find a
complete (conditional) equational specification for Enl⊥(K). In particular:

Corollary 2.1. Given a single-sorted signature Σ which contains at least one
function symbol with two or more arguments, and any equationally defined class
K = Alg(Σ, E), then the class Enl⊥(K) is not definable by conditional equations.

Rather than looking for equational axioms for Enl⊥(K), what can be done
instead, is to look for a finite basis of the full equational theory of Enl⊥(K). At
present we do not know under which conditions such a finite basis can be found.
More specifically, we have no answer to the following question:

Problem 2.1. Let E be a finite set of equations over signature Σ. Must it be
the case that the equational theory of Enl⊥(Alg(Σ, E)) has a finite basis?

For a class K of total algebras considering the class Enl⊥(K) provides no
significant advantages. This fact is illustrated below in Theorem 2.2. The
situation changes, however, if K contains partial algebras. We will see later,
in subsection 2.3, that the construction Enl⊥(A) can easily be enhanced to
totalise partial algebras. For a class K involving partial algebras considering
the (conditional) equational logic of Enl⊥(K) may serve as a substitute for
considering the intricate logics of partial functions that apply to the algebras of
K.

2.2 Algebraic specifications in the presence of absorption

For a datatype A we write ADT(A) for the abstract datatype which contains A.

Proposition 2.3. Let Σ be a single sorted signature including a commutative
two place function + with a zero 0 which is also a constant. Assume that (Σ, E)
is a finite equational initial algebra specification of ADT(A). Then A⊥(ρ̂) has a
finite equational initial algebra specification as well, with auxiliary function

ρ̂ : As ∪ {⊥} → As ∪ {⊥}

such that ρ̂(x) = 0 on all x ∈ As and ρ̂(⊥) = ⊥.

Proof. Let E⊥ be the set of equations imposing that all operations of Σ are
strict, i.e., whenever an argument equals ⊥ so does the result of the operation.
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Next, we can equationally specify the function ρ̂ as follows: for all constants
of Σ,

ρ̂(⊥) = ⊥, ρ̂(c) = 0
and for all functions f of Σ,

ρ̂(f(x1, . . . , xn)) = ρ̂(x1) + (ρ̂(x2) + (· · ·+ ρ̂(xn)..)).
These together are equations E(ρ̂).

Finally, each equation e ≡ P = Q of E is replaced by eρ̂ ≡ P + ρ̂(Q) =
Q+ ρ̂(P ). These are the equations Eρ̂.

It is routine to prove that (Σ⊥,ρ̂, E⊥ ∪E(ρ̂) ∪Eρ̂) is an initial algebra spec-
ification of ADT(A⊥).

The function ρ̂ may be definable from the operations of the algebra A, as
we will see in the case of the semigroup of natural numbers.

The necessity of an auxiliary function, such as ρ̂, for lifting an algebraic
specification from the abstract datatype of A to an algebraic specification for
the abstract datatype of A⊥ is not obvious. We will phrase this matter as an
open question.

Problem 2.2. Is there an example of a single sorted datatype A such that
ADT(A) has a finite equational initial algebra specification while ADT(A⊥) has
no such specification.

Closer to arithmetic datatypes, the following variation on the same question
arises for semigroups:

Problem 2.3. Is there an example of a single sorted datatype A which is
equipped with a commutative and associative operation + and a constant
0 serving as a unit, such that ADT(A) has a finite equational initial algebra
specification while ADT(A⊥) has no such specification.

Next, we note that ⊥-enlargement yields no advantage from the perspective
of algebraic specification of abstract datatypes.

Proposition 2.4. Let Σ be a single sorted signature and assume that A is a Σ
datatype with ⊥-enlargement A⊥. If (Σ⊥, E) is a finite equational initial algebra
specification of ADT(A⊥) then ADT(A) has a finite initial algebra specification
as well.

Proof. Let E′ contain those equations of E in which ⊥ does not occur on either
side. Since A is a restriction (i.e., subalgebra of a reduct) of A⊥, we have
A |= E′. Now suppose that for closed Σ-terms t and r, E ` t = r then the proof
can only involve the application of equations from E which don’t mention ⊥ as
otherwise both t and r must equal ⊥ in A⊥, which is not the case due to the
construction of A⊥ from A. So E′ ` t = r.

2.3 ⊥-enlargement for partial algebras

The notion of a ⊥-enlargement applied to total algebras does little useful work.
However, it extends in a useful manner to partial algebras to make them total.
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Suppose the application of a function f on arguments is undefined in a partial
Σ-algebra A then we can take ⊥ as the result of f on those arguments in A⊥:

Definition 2.3. Let A be a partial algebra with sort s such that As has at least
two elements. Then (re)define the transformation B = Enl⊥(A) to be a total
algebra as follows: Bs = As ∪ {⊥} where ⊥ is an absorptive element, and for
b1, ..., bn ∈ As

f(b1, . . . , bn) = ⊥ in B if, and only if, f(b1, . . . , bn) is undefined in A.

Notice that earlier A was total or partial and Enl⊥(A) simply added ⊥ and
ensured the operations respected it. Following Definition 2.3, in the case of A
partial the notation Enl⊥(A) implies that the partial operations of A have been
made total using ⊥.

Conversely, we can go the other way from a total algebra with absorbtive
element ⊥ to a partial algebra:

Definition 2.4. Let A be an algebra with sort s and with ⊥ as an absorptive
element, and such that As has at least two elements. Then define the transfor-
mation B = Pdt⊥(A) to be a partial algebra as follows: Bs = As − {⊥} and for
b1, ..., bn, b ∈ Bs,

f(b1, . . . , bn) = b in B if, and only if, f(b1, . . . , bn) = b in A.

Proposition 2.5. Let A be a total algebra with sort s and with ⊥ as an ab-
sorptive element, and such that As has at least two elements. Then

Enl⊥(Pdt⊥(A)) = A.

Proposition 2.6. Let A be an algebra with sort s. Then

Pdt⊥(Enl⊥(A)) = A.

Thus, we can formulate a specification method for partial datatypes:

Definition 2.5. Given a partial algebra A, construct A⊥ and seek an initial
algebra specification (Σ⊥, E) of the abstract datatype ADT(A⊥). Then for all
initial algebras C ∈ I(Σ⊥, E),

A ∼= Pdt⊥(C).

This ⊥-enlargement approach to the specification of partial algebras makes
use of conventional equational logic only, thereby avoiding the complications of
various logics of partial functions. Arguably, ⊥-enlargements provide a practical
approach toward the design and analysis of such datatypes.

However, for total datatypes the situation is very different. From Proposi-
tion 2.4 above it follows that for the specification of datatypes which are total
algebras the use of ⊥-enlargements offers nothing new.

The following result formalises the fact ⊥-enlargement is not of much use
for classes of total algebras.
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Theorem 2.2. Let Σ be a single sorted signature. Let K = Alg(Σ⊥, E) ⊆
Enl⊥(Alg(Σ)) (i.e., for all A ∈ K, Pdt⊥(A) is a total algebra), and let E′

consist of those equations of E in which ⊥ does not occur on either side of the
equation, then ⋃

A∈K ADT(Pdt⊥(A)) = Alg(Σ, E′).

Proof. We write K ′ for
⋃
A∈K ADT(Pdt⊥(A)).

“⊆”: Consider B ∈ K ′ and equation t = r ∈ E′. Choose A ∈ K so that
B ∼= Pdt⊥(A). Then A|Σ |= t = r because A |= t = r and ⊥ does not feature in
t and and not in r. Then Pdt⊥(A) |= t = r because it is a substructure of A|Σ,
and Pdt⊥(A) |= t = r because B ∼= Pdt⊥(A). This works for each equation in
E′ so that B ∈ Alg(Σ, E′).

“⊇”: Let B ∈ Alg(Σ, E′), then Enl⊥(B) |= t = r. To see this notice that
t and r must have the same free variables, otherwise t = r cannot hold in any
algebra in K. Now consider an equation u = v in E − E′. If say u contains
⊥ but v does not then u = v cannot hold in any structure in Enl⊥(Alg(Σ)), as
substituting values different from ⊥ to all variables yields a counterexample. It
follows that both u and v contain ⊥ so that Enl⊥(B) |= t = ⊥ = r. We find
that Enl⊥(B) ∈ K so that B = Pdt⊥(Enl⊥(B)) ∈ K ′.

2.4 Many sorted case

Unfortunately, the definition of an absorptive element in the case of a many
sorted signature is somewhat involved.

Definition 2.6. Let A be a structure with many sorted signature Σ and let
s1, . . . , sk ∈ sorts(Σ). A Σ-structure A has absorptive elements for sorts s1, . . . , sk
if the following conditions are met:

(i) each function of Σ which takes at least one of its arguments in one of the
sorts s1, . . . , sk, yields a value in one of these sorts,

(ii) there are a1 ∈ As1 , . . . , ak ∈ Ask , with the property that for each function
f of Σ, if one of the arguments for f is in {a1, . . . , ak} then so is its value.

It is an open question whether the circumstances under which the family of
absorptive elements is unique, allows an informative characterisation.

3 Teams

An additive semigroup is cancellative if it satisfies

x+ y = x+ z implies y = z.

A cancellative additive semigroup may be equipped with a partial subtraction
function as follows:

x− y = z ⇐⇒ x = y + z.
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(x+ y) + z = x+ (y + z) (1)

x+ y = y + x (2)

x+ 0 = x (3)

ρ(x) = x− x (4)

(x+ y)− y = x+ ρ(y) (5)

(x− y) + y = x+ ρ(x− y) (6)

x 6= ⊥ → ρ(x) = 0 (7)

x+⊥ = ⊥ (8)

⊥− x = ⊥ (9)

x−⊥ = ⊥ (10)

Table 1: Teams: A set of axioms for teams

The cancellation property guarantees that subtraction thus defined is a single-
valued relation.

Definition 3.1. A team is a cancellative commutative additive semigroup equipped
with a partial subtraction operator x− y whose undefined values are ⊥.

Example 1. Consider a set N of natural numbers with these three additive
structures:

Nsg = (N|0,+)
Nsg,− = (N|0,+,−)

Nteam = (N|0,+,−,⊥)

being the additive semigroup, the semigroup with partial subtraction and the
team of natural numbers, respectively. The first two have the cancellation prop-
erty. None of the stuctures are minimal.

A set Teams of first order axioms for teams is in Table 1.
The axioms of teams have various useful consequences. Taking ρ(x) = x−x

from axiom 4 the table we find:

1. (Non-triviality) 0 = ⊥ → x = ⊥, i.e. if the team is nontrivial then 0 6= ⊥.
Proof: x = x+ 0 = x+⊥ = ⊥.

2. ρ(⊥) = ⊥. Proof: By equation 5 on taking x = 0 and y = ⊥.

3. ρ(x+ y) = ρ(x) + ρ(y). Proof: There are four cases according to ρ(x) = 0
and ρ(y) = 0 in each case the required fact follows immediately.

4. ρ(0) = 0. Proof: If 0 6= ⊥ then axiom 7 yields ρ(0) = 0. Otherwise, if
0 = ⊥ then ρ(0) = ρ(⊥) = ⊥−⊥ = ⊥ = 0.
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5. x + y = ⊥ → x = ⊥ ∨ y = ⊥. Proof: If 0 = ⊥ then the team is
trivial and the required fact holds trivially. So we assume 0 6= ⊥ and
moreover suppose that x 6= ⊥ and y 6= ⊥. It follows with axiom 7 that
ρ(x) = ρ(y) = 0 so that ρ(x + y) = 0 + 0 = 0, whence, using ρ(⊥) = ⊥,
x+ y 6= ⊥.

6. (Cancellation) x+y = x+z → y+ρ(x) = z+ρ(x). Proof: If x+y = x+z
then y + ρ(z) = (y + x)− x = (z + x)− x = z + ρ(x).

7. (x + x) − x = x. Proof: If x = ⊥ the result is immediate, otherwise
ρ(x) = 0 and (x+ x)− x = x+ ρ(x) = x+ 0 = x.

8. x − (y + z) = (x − y) − z. Proof: We may assume that 0 6= ⊥, x 6=
⊥, y 6= ⊥, and z 6= ⊥, so that ρ(x) = ρ(y) = ρ(z) = ρ(y + z) = 0. Now:
(x − (y + z)) + (y + z) = x + ρ(y + z) = (x + ρ(y)) + ρ(z) = x, and
((x − y) − z) + (y + z) = (((x − y) − z) + z) + y) = ((x − y) + ρ(z)) +
y = (x − y) + y = x + ρ(y) = x. The it follows with cancellation that
(x− (y+z))+ρ(y+z) = ((x−y)−z)+ρ(y+z) so that with ρ(x+y) = 0,
x− (y + z) = (x− y)− z.

Note that ρ has the from of the auxiliary function in Proposition 2.3.
The following proposition asserts that Teams axiomatises teams.

Proposition 3.1. The non-trivial models of Teams are the ⊥-enlargements of
cancellative commutative additive semigroups equipped with a partial subtraction
function.

Proof. Let H be a cancellative commutative additive semigroup with partial
subtraction. It is immediate by inspection that the enlargement H⊥ |= Teams.

Conversely, let K |= Teams be a nontrivial structure. The axioms of Teams
imply that ⊥ is an absorptive element of K, so we can remove ⊥ by H =
Pdt⊥(K).

The algebra H has signature Σsg,− = (s,+,−, 0) and carrier Hs = {a ∈
Ks| a 6= ⊥} with 0 ∈ Hs as 0 6= ⊥. By item 5 above, Hs, is closed under + so
that + is total in H, and the first three axioms of Teams guarantee that H is a
commutative additive semigroup. Item 6 above implies that H is cancellative.

Now concerning subtraction: for a, b, c ∈ Hs, if K |= a − b = c then K |=
c+ b = (a− b) + b = a+ ρ(a− b) = a, which is precisely the criterion required
for subtraction being defined in a cancellative semigroup. It follows that the
⊥-enlargement K of H is a team (cf. Proposition 2.5).

Proposition 3.2. Teams cannot be defined by conditional equations, i.e., do
not constitute a quasi-variety.

Proof. Suppose a set Eteam of conditional equations axiomatises the class of
teams. Let c be a new constant then in all models of Eteam for each interpreta-
tion of c: either c = 0 or 0 − c = ⊥ or c + (0 − c) = 0. It follows that at least
one of these equations is derivable from Eteam in which case Eteam is not sound
for all teams.
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We are unaware of an answer to the following question.

Problem 3.1. Does the equational theory of teams have a finite basis (i.e. a
finite equational axiomatisation)?

Finally, because of our focus on subtraction x−y, we have defined teams for
additive semigroups. The ideas apply to multiplicative semigroups and lead to
a form of binary division x/y.

4 Splinters

A basic property of an algebra that acts as a datatype is that it is minimal. The
algebras of the last section – in particular, the team of natural numbers – are
not minimal. To remedy this, we define a splinter, which abstracts the idea of
generating numbers from 0 using successor s(x) = x+ 1.

4.1 Splinter property

Definition 4.1. A single sorted algebra A of signature Σ with sort s is a splinter
if there is a closed Σ-term t and a Σ-term r(x) with (at most) one free variable
x, so that their set,

{JtK, Jr(t)K, Jr(r(t))K, . . . },

of values in A is the carrier of A.

The following is obvious:

Lemma 1. Any Σ-algebra with the splinter property is Σ-minimal, i.e., a
datatype.

Example 2. First, note that the algebraic construction of the naturals from 0
with the successor function,

(N|0, succ),

is a splinter: Σ contains a constant 0 and a unary function symbol S so that
one may take t ≡ 0 and r(x) ≡ S(x).

Recalling the algebras in Example 1, we add 1 as a constant to the additive
semigroup, the semigroup with partial subtraction and the team of natural
numbers, respectively:

Nsg,1 = (N|0, 1,+)
Nsg,−,1 = (N|0, 1,+,−)

Nteam,1 = (N|0, 1,⊥,+,−)

These structures are splinters and so are minimal. In each case, the signature
Σ contains 0 and a two place function + so that one can take t ≡ 0 and
r(x) ≡ x+ 1.

12



Adding an absorbtive element ⊥ to a splinter requires special treatment:

Definition 4.2. Let A be an algebra that is a splinter. Then Enl⊥(A) is a
called a common splinter.

On combining the constructions of (i) totalisation using teams and (ii) mini-
mality using splinters, we have completed the first stage of our abstract analysis
of the datatype of natural numbers with the partial operation of subtraction.

Splinters are of general use in the theory of algebraic specifications for com-
putable abstract datatypes. A computable algebra A has a computable enumer-
ation α : N → A – in which the operations and equality of A are computable;
computability is an isomorphism invariant and so a property of abstract data
types: see, for instance, [10].

Restricting to the single sorted case:

Proposition 4.1. Each computable datatype has an enrichment to a splinter
such that an equational initial algebra specification can be given for the corre-
sponding abstract datatype.

Proof. This can be found in the proofs of [10].

5 Natural numbers with multiplication

Adding multiplication to the additive semigroup of naturals, we obtain a semir-
ing of natural numbers: Nsr = (N|0, 1,+, ·). This is a standard algebraic struc-
ture and is splinter.

5.1 Common semirings with subtraction

We will focus on the following algebra, which is a common semiring with sub-
traction, i.e., team extended by 1 and ·:

Nteam,1,· = (N|0, 1,⊥,+,−, ·),

If Σteam is the signature of teams then let Σteam,·,1 be the signature of
Nteam,1,·. Recalling our notational conventions:

Definition 5.1. Nteam,1,· is the isomorphism class of Nteam,1,·, i.e., the abstract
datatype.

Although we have defined the abstract datatype Nteam,1,· using a specific
algebra Nteam,1,·, note that it is independent of the choice of parameters namely,
the set N and the element ⊥.

Without proof we mention:

Proposition 5.1. The equations in Table 2 constitute an initial algebra speci-
fication of Nteam,1,·.

We notice that Nteam,1,· |= (x+ 1) · (y− z) = ((x+ 1) · y)− ((x+ 1) · z) while
Nteam,1,· 6|= x · (y − z) = (x · y) − (x · z). Moreover, Nteam,1,· |= x − x = 0 · x
while Nteam,1,· 6|= 0 · x = 0.
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(x+ y) + z = x+ (y + z) (11)

x+ y = y + x (12)

x+ 0 = x (13)

x− 0 = x (14)

(x+ 1)− (y + 1) = x− y (15)

0− (y + 1) = ⊥ (16)

x+⊥ = ⊥ (17)

⊥− x = ⊥ (18)

x−⊥ = ⊥ (19)

−−−−−−−−−−−−−−−−−−−−−−−−−−
x · y = y · x (20)

x · (y · z) = (x · y) · z (21)

1 · x = x (22)

(x+ y) · z = (x · z) + (y · z) (23)

x · ⊥ = ⊥ (24)

Table 2: Specification of the abstract datatype Nteam,1,·.

x− (y + z) = (x− y)− z (25)

((x+ x)− ((1 + 1) + 1)) + ((x+ (x+ x))− (((1 + 1) + 1) + 1))

= ((x+ x)− ((1 + 1) + 1)) (26)

−−−−−−−−−−−−−−−−−−−−−−−−−−
(x+ z)− (y + z) = (x− y) + (0 · z) (27)

(x− (y − z)) + 0 · (x− y) = ((x− y) + z) + 0 · (y − z) (28)

x− (y − z)) = ((x+ z)− y) + 0 · (y − z) (29)

(0 · x) + (0 · y) = 0 · (x · y) (30)

(x+ 1) · (y − z) = ((x+ 1) · y)− ((x+ 1) · z) (31)

(3 · x)− 4 = (5 · x)− 6 (32)

Table 3: Some equations valid in Nteam,1,·.
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5.2 Equational theories: Impossibility of an ω-complete
specification

An algebraic specification (Σ, E) with initial algebra I(Σ, E) is called ω-complete
or inductively complete if for all equations e over Σ,

I(Σ, E) |= e ⇐⇒ Alg(Σ, E) |= e.

In other words, the equational theory of the initial model Eqn(I(Σ, E)) is iden-
tical to the equational theory of the whole specification Eqn(Alg(Σ, E)); equiv-
alently, if all equations valid in its initial model are equationally derivable from
it. A key consequence is this: The equational theory of Eqn(I(Σ, E)) has a
finite basis if, and only if, it is ω-complete. See [21] for details.

Solvability of Diophantine equations over the integers is undecidable; see,
e.g., the discussion in [24] of the work by Matijasevitch which finally solved
Hilbert’s 10-th problem in the negative. Solvability of diophantine equations
p(x1, . . . , xk) = 0 by non-negative integers is also undecidable: otherwise for an
equation with n-variables, 2n subcases can be constructed each of which deal
with non-negative solutions only. So we find that the non-solution of diophantine
equations by non-negative integers is not computably enumerable.

Proposition 5.2. The equational theory of Nteam,1,· has no finite basis.

Proof. If the equational theory of Nteam,1,· has a finite basis then the said
equational theory is computably enumerable. Now, picking our concrete algebra,
if Nteam,1,· |= t = r were computably enumerable then so is the non-solution of
diophantine equations over the natural numbers, which contradicts known facts.
To see this reduction, consider a polynomial p with variables x = x1, . . . , xk.
We will reduce non-solvability of the equation p = 0 to validity of an equation
in Nteam,1,·.

Given p write p = q − r where q and r both contain 0, 1,+, · only. Now
p = 0 ⇐⇒ p2 = 0 ⇐⇒ (q2 + r2)− (2 · q · r) = 0 so we find:

(∀x ∈ Nk)[p 6= 0] ⇐⇒ Nteam,1,· |= 0 · (((q · q + r · r)− (q · r + q · r))− 1) = 0.

The last 6 equations in Table 3 are true in Nteam,1,· and serve as an indication
of the wealth of true equations in that setting.

6 Natural numbers without multiplication

Now consider the datatype Nteam,1 . This datatype is the reduct of Nteam,1,·
to the signature without multiplication, of course. The following basic fact is
routine.

Proposition 6.1. The first 9 equations of Table 2 constitute an initial algebra
specification of Nteam,1 .
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The first 2 equations of Table 3 are valid in Nteam,1 .

Proposition 6.2. The equational theory of Nteam,1 is decidable.

Proof. Validity of an equation over Nteam,1 can be expressed as a first order
sentence over Presburger arithmetic which is known to be decidable. We refer
to [20] for information on Presburger arithmetic .

Problem 6.1. Does Nteam,1 have an ω-complete initial algebra specification
(in other words: does its equational theory have a finite basis)?

This problem has a simpler but yet open version as follows:

Problem 6.2. Does the collection of equations involving a single variable only
and valid in Nteam,1 have a finite axiomatisation by means of equations with
any number of variables and valid in Nteam,1?

7 Concluding remarks

7.1 Summary

In this note we have discussed some properties of arguably the most ubiquitous,
or most obvious, example of a partial function: subtraction of natural numbers.
Totalisation of subtraction in structures on the natural numbers is achieved
by means of enlargement to a structure involving an absorptive element, here
denoted ⊥. Starting with the structure of an additive semigroup, where sub-
traction on the naturals belongs, we defined teams. Note that teams contain a
binary subtraction operator, rather than a unary additive inverse operator as
found in groups – remember an additive inverse does not have a role in the natu-
ral numbers. In principle, teams play a visible role in arithmetic as arithmetical
datatypes for computation.

In exploring the fundamentals of arithmetical datatypes one encounters
many distinct structures of interest even on the natural numbers. Having made
definite choices of operations, the concepts, terminology and methods of abstract
datatype theory become available for analysis, classification and new techni-
cal insights. They are also necessary: in pure mathematics, for example, the
arithmetical structures are represented by now classical notions like semigroup,
group, semiring, ring, field etc. But in practical arithmetical computations many
more algebraic structures are needed, possibly designed in an ad hoc way for
a specific purpose. In our studies of arithmetical structures these many alge-
bras of interest need the explicit and uniform use of signatures, equations about
operators, etc. These algebras may not appeal to pure mathematicians.

7.2 Totalisation and ⊥
Unique absorptive elements play a key role in computer arithmetics, of which
there are many. They have roles as flags for semantic behaviours, not only

16



partiality. Flags are commonly used to raise exceptions that need special atten-
tion; in arithmetical structures there are several. Inspired by floating point, in
Anderson’s transreal arithmetic [1, 15] the corresponding entity is referred to
as nullity, which acts like a non-signalling NaN . Inspired by exact computer
arithmetic based on intervals, in Setzer’s wheels [28, 14] the absorptive element
is denoted ⊥, which is used to control undesired properties of ∞. We have
studied transrationals and wheels of rationals using abstract datatype theory in
[12] and [13], respectively.

In the common meadows of [9], the absorptive element is denoted with a,
where it is used for totalising division. Here, and elsewhere, we have replaced
a with ⊥ but kept the term ‘common’ to indicate the presence of totalisation
using an absorbtive element.

In terms of totalisation, division is an example of a partial operation on
many classical arithmetical structures because of 1/0; as a partial operation,
division is second only to subtraction on natural numbers. Studies of division
align with rings and fields, rather like subtraction aligns with semigroups and
cancellative semigroups. A survey of options for totalisation of division can be
found in [4].

Now, the authors of [25] insist that totalising division, should not lead to
the incorporation of an absorptive element in the algebra of numbers, rather
they claim that 1/0 = 0 must be used. (We have not found written information
on the point of view of the authors of [25] concerning subtraction, or in fact
division, on naturals.) In the 1980s, logical aspects of algebra with 1/0 = 0
have been first studied in a systematic manner in [26], however without any
claim that so doing is mathematically necessary.

Pursuing the same 1/0 = 0 approach in the setting of abstract datatypes
is done in [11] and subsequently in [8] and [6], creating a theory of involutive
meadows: if 0−1 = 0 then inverse is an involution.

Turning to minimality, the term ‘splinter’ has been taken from [30]. A
splinter with operations totalised by ⊥ may be termed a ‘common splinter’,
in accordance with [9] where a meadow equipped with an absorptive element,
serving as the value of 0−1, is referred to as a common meadow. Common
meadows are to be contrasted with involutive meadows: if 0−1 = ⊥ then inverse
is not an involution.

Admittedly, choosing 0 − 1 = 0 is less problematic than adopting 1/0 = 0,
which runs counter to the intuition of most mathematicians. A conventional
way to turn subtraction on naturals into a total function is to use a binary
monus function that replaces ⊥ by 0 and is denoted ·−. Nevertheless, we hold
that viewing 0− 1 as undefined, when working in non-negative integers is more
plausible and sustainable. Adopting ⊥ as a formalisation of “being undefined”,
so that 0 − 1 = ⊥, constitutes a straightforward formalisation of the intuition
of “being undefined” in the context of all arithmetical datatypes.

This is not the place to go into the history of absorbtive elements and their
uses. Our own introduction to them was in non-classical logics, especially the 3-
valued logics of Kleene, designed to interpret the logic of computable predicates
on the natural numbers [22]. Kleene’s weak 3-valued logic has an absorbtive
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element u of our kind (in his strong 3-valued logic u is not fully absorbtive for
conjuction). Kleene’s logics have a special place in the theory of non-classical
logics [18]. The symbol ⊥ is associated with the order-theoretic structures
of denotational semantics where it is the lowest element ‘bottom’, e.g., [27].
Absorbtive elements for algebras and logics have been used in Hoare logics to
reason about semantic errors in programming over abstract data types (e.g.,
[29]).

7.3 Subtraction

Expressions with subtraction as the leading function symbol deserve a name.
We suggest to refer to p − q loosely as “the difference of a and b”; and to call
the expression p− q a diffterm and its value a diffsize.

The contrast between differences and diffterms is similar to the contrast
between fractions and ratios in [8]. The notations are often overloaded and
obscured in expositions. Following the arguments of [17] regarding division,
with notably fraction considered not to be a mathematical notion, it is then
plausible that difference is not considered to be a mathematical notion either.
In the case of addition, [5] argues for the use of “sumterm” for an expression of
the form p+ q, with sum standing for an ambiguous notion which depending on
context may either be a value or an expression. We find that diffterms 5−2 and
11 − 8 are equivalent but not equal, whereas the diffsizes J5− 2K and J11− 8K
are equal. The diffterm p− q has p as its minuend and q as its subtrahend.

7.4 Perspectives

Arithmetical structures are designed to count, measure and, especially, compute.
Rather than viewing algebras of natural numbers as classical abstract entities,
both standardised and timeless, such numbers may be seen as having different
roles and forms of existence. They are a classical object of study in mathematics,
especially number theory and logic; they are used to model phenomena; they
play a central role in numeracy and general education; they code texts, sounds
and images; and they determine the scope and limits of practical computation
and communication. In a more philosophical form, the idea of role is central to
Benacerraf’s commentary [3].

The role of computing challenges the classical algebra of arithmetic struc-
tures. The need for semantic flags create more structures. The natural numbers
serve as a parameter type for lots of constructions of datatypes and abstract
datatypes as discussed in detail in [5].

Emphasising the distinction between concrete and abstract datatypes, as we
do, is not essential for a theory of abstract datatypes, which can be developed
more abstractly without much mention of datatypes proper, and which may
come close to the tenets of structuralism such as expounded in [2], for instance.

We think that maintaining the notion that a datatype implements an ab-
stract datatype constitutes a fundamental intuition which ought to be intro-
duced and preserved right from the start of the development of theories of
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arithmetical datatypes. The latter view is compatible with our understanding
of [19] where so-called practices enter the ontology of numbers. Datatypes may
be understood as a way of capturing the (or an) essence of certain calculational
practices.
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